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Abstract 

Characteristic polynomials of the set of 284 trees which have 1 - 12 vertices of 
valency 1 - 3  have been examined for possible factors (divisors) using polynomial 
division. Twenty of these trees are prime in the sense that they contain no other 
trees in the set as factors. The remaining 264 trees can all be constructed from a 
subset of 5 trees and a set of 152 non-graphical polynomials. Some of these poly- 
nomials exhibit iso- or sub-spectral relationships with acyclic (matching) poly- 
nomials of certain cyclic structures. A few cyclic factors of trees are noted briefly. 
Twenty pairs and one triad of the trees examined are isospectral. 

1. I n t r o d u c t i o n  

The search for factors of  a polynomial,  especially of  the characteristic poly- 

nomial o f  a graph, is seductive and intriguing. Common factors suggest structural 
relationships, and several related families o f  structures have been noted [1] .  These 

may be a useful means o f  classification for information storage and retrieval; they may 

yield simpler or more revealing ways of  expressing the polynomial,  and they can aid 
graph recognition. One might also expect  that structural relationships of  this kind 

would be reflected in some connectivity related physicochemical properties,  although 

in practice so far this does not appear to be so [ 2 - 4 ] .  
Another  reason to search for factors is that polynomials can be difficult to 

solve and, because this difficulty tends to increase with size, a decomposi t ion into a 
product  o f  smaller polynomials can help towards an accurate solution. This is com- 
paratively unimportant  for a characteristic polynomial because its zeros can also be 

obtained as the eigenvalues of  an adjacency matrix.  For others, such as acyclic (or 
matching) polynomials however, it could offer a significant advantage. 

Whatever the immediate utility of  factorisation, the relationships it seems to 
show are remarkable and wor thy  o f  exploration.  The characteristic polynomial  (CP) 
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is always expressed here as a linear combination of characteristic polynomials of linear 
chains. For example, the CPs of pentadienyl and of 2-methylbutadienyl are written as 
L (5) and L (5)--L (1), respectively. Randid [1,5] has pointed out that chemists have 
rather neglected this useful and elegant notation, and has put it to good use himself. 
It has tended to be used only for intermediate calculations, although it has also been 
used explicitly [6]. 

I11 this paper, a graph is not distinguished from its characteristic polynomial 
(CP). The term graphical factor is used to denote a polynomial factor of a polynomial 
which itself corresponds to the characteristic polynomial of some other graph. The 
term non-graphical factor is used to denote a polynomial factor for which no such 
corresponding structure has been recognised. The latter term is applied even if there 
is some "artificial" graph with weighted vertices and/or edges which can be drawn 
to express the characteristic polynomial. 

The term factor can itself cause confusion: its use in connection with a number 
or a polynomial is obvious, but in connection with a graph, the word is often used for 
a different concept: that of a spanning sub-tree. For factor in the sense used here, the 
term Front Divisor has been used [7]. Throughout this paper, however, the word 
factor is used in its general and better known sense in all cases. 

Factorisation is an open-ended task unless arbitrary limits are placed on the 
kinds of factors which are acceptable. For example, when factoring integers one 
generally restricts the results to those which are products of integers. Here we define 
the task of factoring chemical graphs and their polynomials as that of extracting one 
or more graphical factors, leaving a residual polynomial which may or may not be 
graphical. 

Even this is not an easy problem. It is difficult to devise algorithms for de- 
ducing factors, and especially to devise ones which will find, and will be known to 
find, all possible factors of the class defined. Some progress has been made with 
structures which have an obvious symmetry. King [8] examined a number of poly- 
hedral structures: McClelland [9] devised a useful method for exploiting local sym- 
metries in a molecule, and early work on graphical decompositions, pioneered by 
Heilbronner [10], often incidentally suggested factors. The recognition of the phe- 
nomenon of sub-spectrality was a recognition that common factors occur [2,3,8, 
1 1 - 1 4 ] .  More recently, McWorter [15] used the Fr6benius matrix to construct the 
characteristic polynomial: a method which gives an opportunity for obtaining some 
factors. Randid and his coworkers developed this, and work by Balasubramanian [16], 
into a method for factorising trees which they called "ultimate pruning" [1 7]. This 
bypasses gradual pruning and starts at once with a 2 X 2 determinant whose elements 
are fragments of the initial tree. By choosing alternative forms of the "ultimate 
determinant", it is possible to see common factors in a row or column, and these will 
be factors of  the original polynomial. This method does not always provide a complete 
factoring, but it has the considerable advantage over some approaches that the factor- 
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ing is not necessarily symmetry related. It is though, in its present form, confined to 
trees. 

A recently published paper on the computation of  the characteristic polynomial 
[18] refers to Krylov's method [19]. This sometimes yields a factor of the desired 
characteristic polynomial, and we wondered if this could form the basis of a method 
for factoring. However, preliminary trials have not been promising; it is too capricious 
and unreliable. 

We have adopted a less subtle approach to the problem, and in a previous 
paper [20],  the technique of polynomial division was described and a few arbitrarily 
chosen examples shown. This is simply the division of one polynomial into another 
to test whether the one is a factor of the other: for if it is, it will leave no remainder. 
Such an elementary test now has practical use because of two recent developments: 
(i) the availability of  small computers which can be easily programmed to perform 
the rather tedious task of polynomial division quickly and accurately, and (ii) the 
discovery of practically useful methods for evaluating the characteristic [ 2 1 - 2 5 ]  and 
acyclic [26,27] polynomials. 

A fundamental weakness of this method (although it is not alone in this 
respect) is that there is no assurance of completeness, It will only confirm or reject 
possible factors that have been considered and thought appropriate to test. On the 
other hand, modern computer technology makes the extensive testing and searching 
of lists much more practicable than before. The method is also very powerful in 
another sense: it is not confined to any particular class of graph (e.g. to trees or 
polycyclics), nor to any particular Mnd of polynomial. A final point of interest is 
that polynomial division appears occasionally to show up the occurrence of a factor 
that is ignored by other methods [20]. 

This paper focusses upon a certain set of acyclic structures {trees): those which 
have 1 - 1 2  vertices and valencies in the range 1--3. This particular set was chosen 
because it includes graphs of conjugated hydrocarbons, and a recent publication [28] 
provides a complete ordered list of its members. It is also a list of manageable size 
(284 members) for use with a standard (IBM) personal computer. 

2. M e t h o d  used  

2.1. CODING A STRUCTURE FOR COMPUTER USE 

Quite a lot of work has been done on the development of efficient codes for 
computer use, and a recent paper by Balaban et al. [29] gives a useful and up to date 
review of the subject. Their own method is based on hierarchically ordered extended 

connectivities. 
Tile numbers in one triangular half of an adjacency matrix provide all the 

connectivity information required for a code. Since, however, there are n! possible 
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adjacency matrices for any given structure with n vertices, the code will be more 
useful if one particular adjacency matrix can be defined. Randid [ 3 0 - 3 3 ]  chose 
the one which, when the rows of elements are read sequentially, gives the smallest 
binary number. Hendrickson and Toczko used a similar scheme but preferred maximal 
numbering of  the adjacency matrix [34]. For trees, the "N-tuple" representation 
published from Zagreb and Diisseldorf can be used [28]. These all provide a unique 
code for a particular structure. The N-tuple code can be extended to cyclic structures 
along lines recently outlined by Randid [35]. 

Although the N-tuple code is very attractive, and is in principle easy to con- 
struct, the author has not found it particularly convenient to use for the typing of 
extensive lists of structures. This is mainly because it does take time, and it is not 
always easy immediately to recognise transcription errors. So for practical purposes, 
in this study we have chosen to forego the benefit of  a unique representation in 
favour of one which is very simple to encode and decode, and which makes immediate 
use of the information presented. In this method, the n-vertex structure is, by an 
appropriate numbering, regarded as some deviation from a linear n-vertex system. 
Only the system size and the connections which define deviations from linearity need 
to be recorded. The structure so defined is unique. There are many possible codes 
which could define it with equal validity, but only a few will be of the Same minimum 
length. For these fairly simple structures, it is quite easy to choose a minimal number 
of  fragments by inspection. 

2.2. PRACTICAL CODING RULES 

Encoding (fig. 1 shows an example): 

(1) Count the (n) vertices and set the first code element to this number. 
(2) If the structure is nonlinear, then break it into as few as possible linear 

fragments by marking appropriate connections to be broken. It does not 
matter if the number of linear fragments produced is not minimal, although 
it will lengthen the code needlessly if it is not. 

Structure is 

Codeis12 3 -4  7 - 8  2 - 6  5 -10  

9 8 4! :c 
I 5 - - -  10  

32~ - -  2 

Fig. 1. An example of structure encoding. 
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(3) Number the whole assembly, which forms a disconnected graph, with the 
vertices of each fragment being numbered consecutively. 

(4) Record each pair of vertices which, in comparison with a consecutively 
numbered linear chain of n vertices, has a connection made or deleted. 

It follows from this description that every code will be an odd length string of 
numbers. The set of 284 trees considered here can all be encoded with 13 or fewer 
numbers. 

Decoding (fig. 2 shows an example): 

(1) Read the first code element n and draw a sequence of  n dots numbered 
consecutively. 

(2) Read each subsequent pair of numbers. If they are consecutive, then mark 
the pair of numbered dots as not connected; otherwise draw a connection. 

Code is 12 3 -4  2 -4  4 -5  4 - 6  7 -8  7 -9  

• • • • • • • • • • • • 
! 2 3 4 5 6 7 8 9 i0 I! 12 

• • o O  g O  • • oO • • • • • 
! 2 3 4 5 6 7 8 9 I0 I1 12 

! 2 3 4. 5 6 7 8 9 I0 !! 12 

Structure is 

Fig. 2. An example of  decoding. 

(3) Draw in the remaining unmarked consecutive connections. 
(4) If necessary, redraw the graph to "straighten" the bonds and give a more 

conventionally arranged structure. 
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2.3. DERIVATION OF CHARACTERISTIC POLYNOMIALS 

The computer file of  284 structure codes was read by a program which converts 
each code into the corresponding adjacency matrix, and converts this into its character- 
istic polynomial using "Frame's method"  [21 - 2 5 , 3 6 ] .  Each characteristic polynomial 
was stored and manipulated in the form of  a string of  coefficients which represents a 
linear combination of  characteristic polynomials of  linear polyenes. Computer 
programs are described in refs. [22,24,25] .  This method for the characteristic poly- 
nomial, which involves a succession of matrix multiplications to give traces which bear 
a simple relationship to the coefficients, was brought to the attention of  chemists by 
Balasubramanian [21] and ascribed by him to Frame [36]. Recently, Barakat [37] 
has shown that the so-called Frame's method is "nothing but symmetric functions 
and Newton's identities". For a comment on the solution of  Newton's identities, 
see Randid's paper [38]. 

2.4. TESTING BY DIVISION FOR POSSIBLE FACTORS OF POLYNOMIALS 

The tool for this work is a program which examines a file of  polynomials under 
test (file A), and against each one it tries each member of  a second reference list of  
possible polynomial factors (file B). If division leaves no remainder, then a tlactor has 
been found; it is tried again on the quotient  until division fails, and then moves on to 
try the next possible factor on the original polynomial.  Each factor (with its power if 
it divides more than once), together with the residual polynomial alter extraction from 
the file A polynomial,  forms a record in a new file C. 

The residual polynomials in file C are examined for duplicates, sorted, and 
themselves examined for factors in the same way to produce a new file of  factors 
and residual polynomials, and so on. To aid searching and recognition, lists of non- 
graphical polynomials were sorted each time they were assembled. The list is first 
grouped in ascending order of  n. It is then successively sorted on the basis of  the 
magnitude of  each coefficient from n - 1 to 0. If this is done, it is easy to search a 
printed list by eye for a particular polynomial,  if required. After a few such iterations, 
a file of residual polynomials is obtained which do not contain any file B factors. For 
this particular case, file A and file B start out as being identical, although the entries 
in file B actually examined can be restricted to those of  the same or lower order than 
the polynomial being divided. A file B polynomial which is of the same order will 
only show up a factor if it is isospectral (quotient = 1 ). 

For this list of  284 characteristic polynomials, four iterations were needed to 
fully extract all structural factors. The records m each file were given pointers to 
enable successive factorisations to be traced through. The combination of  these lists 
of file records can thus be regarded as sets of  trees where every path represents a 
possible factorisation, and where a number of  redundancies will occur because a new 
ordering of  factors will be regarded as a new factorisation. This may be illustrated by 
fig. 3, where the results of  the factorisation of  structure number 257 are shown. 



E.C. Kirby, The factorisation of chemical graphs 181 

0 

) 

o o  

cC~ 

c-,I 

0 

. J  

~ ~., .~ o 

~ m 

. . . . . . . . . .  o o ~  ~ 

M m 

I I m 

7-, 

. J  
i 

, # 
A 

' M 

~° 

v 
.J  ,J  

I I 

• ~ ~ o ~ 

° ' ~ . ~ "  S ~ 

o 

o 

o 

S 

X 



182 E.C. Kirby, The factorisation of chemical graphs 

Although the residual polynomials obtained by this process no longer contain 
graphical factors, it was found that a number of them are actually products of others 
in the same list. The first list of 245 residual non-graphical polynomials was therefore 
tested against itself in a similar manner, and a final "irreducible" list of 152 obtained. 

Table 3 shows the final list of factorisations obtained when duplicates are 
eliminated. The lists shown in tables 1 - 3  are also available in computer-readable 

form:see appendix. 

3. Discussion 

3.1. RESULTS 

Table 1 lists all the trees considered ( 1 - 1 2  vertices; valency 1 -3 ) toge the r  
with their characteristic polynomials. The 284 trees follow the same sequence as is 
given in ref. [28], but in reverse order for each system size. In the table, each tree 
is shown as a code, from which its structure can be reconstructed. Within this paper. 
a given structure is referred to by its list number given in table 1. The methods of 
calculation used are given in the methods section above. 

Table 2 lists the 152 non-graphical polynomial factors which remained when 
all graphical factors had been extracted from the polynomials of table 1, and table 8 
shows those which occur most frequently. 

Table 3 shows, as a set of reference numbers, the unique factorisations ob- 
tained, each one being the product of one or more graphical factors with one or 
more non-graphical factors. The graphical factors shown are not all prime, because 
many of them can themselves be factorised, as can be seen by inspection of the list 
in table 3. Graphical factors are listed in table 4, and table 7 shows the ten which 
occur most frequently. Twenty of the polynomials are prime (see below), and are 
listed in table 5. Of these twenty, fifteen represent trees which could neither be 
factorised themselves nor used to build other trees. (This last fact has, of course, 
no significance for the trees of order 12, since that was the largest size examined.) 

It follows from table 5 that the ultimate list of graphical factors is quite small and 
consists of only five polynomials: L(1 ), L(2), L(4), L(6), and L(8) - 2L(4) - 3 L ( 2 )  - 1. 
Thus, the table 1 list of 284 characteristic polynomials consists of 20 which are 
unfactorisable (by the tool applied), plus 264 which can all be expressed as some 
product from 5 graphical and 152 non-graphical factors. 

3.2. PRIME TREES 

Prime means (here) not divisible by any of the other trees of table 1. The 
20 prime trees found (table 5) do not seem to show any consistent relationships among 
themselves. Structures 21 : CP = L(8) -L(4 )  -L (2 )  and 53:CP = L(10) -L (6 )  - L  (4) are 
an obviously related pair, but the third member of this series [159: CP = L (12 ) -L (8 )  
-L(6)]  is factorisable. 
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All even length chains are prime except for L(8), and this polynomial is an 
interesting absentee from the list of table 5. Randid et al. [17] state that even length 
chains have no factors of similar parity. This is not quite correct, for L(8) may be 
factorised as L(2). [L(6) - L(4) + 1]. It is easy to verify that L(2) is a factor of the 
series L(6N + 8). The first few members are shown below and form a simple recurrent 
sequence. 

L ( 8 )  = L (2 ) .  [L (6 )  - L ( 4 )  + 11 

L ( 1 4 )  = L ( 2 ) .  [ L ( 1 2 )  - L ( 1 0 )  + L ( 6 )  - L (4 )  + 11 

L ( 2 0 )  = L ( 2 ) .  [ L ( 1 8 )  - L ( 1 6 )  + L ( 1 2 ) -  L ( 1 0 )  + L ( 6 )  - L ( 4 )  + 1] 

L ( 2 6 )  = L ( 2 ) .  [ L ( 2 4 )  - L ( 2 2 )  + L ( 1 8 )  - L ( 1 6 )  + L ( 1 2 )  - L ( 1 0 )  + L ( 6 )  -- L ( 4 )  + 1 ] 

L ( 3 2 )  = L ( 2 ) . [ ( L ( 3 0 ) -  L ( 2 8 )  + L ( 2 4 ) -  L ( 2 2 )  + L ( 1 8 )  - L ( 1 6 )  + L ( 1 2 )  - L ( 1 0 )  + L ( 6 )  - L (4 )  + 1] 

If L(2) is regarded as having the notional factorisation L(2).(1), then the 
sequence can be generalized to L(6N + 2). This can be shown in algebraic terms: 

The division of  L(n) by L(2) can be expressed as 

L(n)/L(2) = L ( n - 2 )  - L ( n - 4 )  + L(n-6)/L(2), 

which can be rewritten as 

L(n + 6)/L(2) = L(n +4) - L ( n + 2 )  + L(n)/L(2). 

If L(2) is a factor of L(n), then it is a factor of 

L(2).[L(n +4)  - L(n +2)1 + L(n), 

which evaluates to L(n + 6). Using n = 2 for the first factorisable chain gives 
the recurrent sequence shown. 

This extraction of an L(2) factor illustrates the power of this method to show 
factors which may otherwise be overlooked. In the case of L(8), it is evident from 
published eigenvalues [39] that L(2) must be a factor, and this fact may also be 
deduced graphically. If Heilbronner's tectmique [10] is applied to the second bond 
of octatetraene,the result L(8) = L(2).L(6) - L(1).L(5) is obtained. L(5), pentadienyl, 
can be seen from its symmetry to have a factor L(2). Therefore, L(2) is a factor of 
L(8). 

3.3 .  I S O S P E C T R A L  T R E E S  

Table 6 shows the isospectral trees which occur in the set examined (20 pairs 
and 1 triad). They are easily detected by the scheme described, for if a tree has an iso- 
spectral partner, it will show one factorisation as a single graphical factor reference 
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Table 2 

Non-graphical polynomial factors found for the trees of table 1 

1 L(2) - 4 53 L(8) - 3L(6) +/.(4) + L(2) 
2 L ( 2 ) - 3  54 L ( 8 ) - - 3 L ( 6 ) + 2 L ( 4 ) - 4 L ( 2 ) + 4  
3 L ( 2 ) - 2  55 L ( 8 ) -  3 L ( 6 ) + 2 L ( 4 ) - 3 L ( 2 ) + 2  
4 L ( 2 ) - I  56 L ( 8 ) -  3 L ( 6 ) + 2 L ( 4 ) - - 2 L ( 2 ) + 2  
5 L ( 4 ) - 4 L ( 2 ) + 6  57 L ( 8 ) - 3 L ( 6 ) + 2 L ( 4 ) - 2 L ( 2 ) + 3  
6 L(4) -- 3L(2) 58 L(8) - 3L(6) + 2L(4) - L(2) + 1 
7 L ( 4 ) - - 3 L ( 2 ) + 2  59 L ( 8 ) -  3 L ( 6 ) + 2 L ( 4 ) - L ( 2 ) + 2  
8 L(4) - 3L(2) + 3 60 L(8) - 3L(6) + 2L(4) - 1 
9 L(4) - 2L(2) - 2 61 L(8) - 3L(6) + 2L(4) 
10 L ( 4 ) - 2 L ( 2 ) - I  62 L ( 8 ) - 3 L ( 6 ) + 3 L ( 4 ) - 4 L ( 2 ) + 5  
11 L ( 4 ) - 2 L ( 2 )  63 L ( 8 ) -  3 L ( 6 ) + 3 L ( 4 ) -  3L(2)+3 
12 L ( 4 ) - 2 L ( 2 ) + 2  64 L ( 8 ) -  3 L ( 6 ) + 3 L ( 4 ) - 2 L ( 2 ) + 2  
13 L ( 4 ) - - L ( 2 ) -  1 65 L ( 8 ) - 3 L ( 6 ) + 3 L ( 4 ) - L ( 2 ) - -  1 
14 L ( 4 ) - L ( 2 )  66 L ( 8 ) - 3 L ( 6 ) + 4 L ( 4 ) - - 5 L ( 2 ) + 6  
15 L ( 6 ) - 4 L ( 4 ) + 5 L ( 2 ) - 6  67 L ( 8 ) - 2 L ( 6 ) - 2 L ( 4 ) + l  
16 L ( 6 ) - 4 L ( 4 ) + 5 L ( 2 ) - 4  68 L ( 8 ) - 2 L ( 6 ) - 2 L ( 4 ) + L ( 2 ) + 2  
17 L ( 6 ) - 4 L ( 4 ) + 5 L ( 2 ) - 3  69 L ( 8 ) - 2 L ( 6 ) - - L ( 4 ) - L ( 2 ) -  1 
18 L ( 6 ) - 4 L ( 4 ) + 6 L ( 2 ) - 8  70 L ( 8 ) - 2 L ( 6 ) - L ( 4 ) - L ( 2 )  
19 L ( 6 ) - 4 L ( 4 ) + 6 L ( 2 ) - 6  71 L ( 8 ) - 2 L ( 6 ) - L ( 4 ) - L ( 2 ) + 2  
20 L ( 6 ) - 3 L ( 4 ) + 2  72 L ( 8 ) - - 2 L ( 6 ) - L ( 4 )  
21 L ( 6 ) - 3 L ( 4 ) + L ( 2 ) - - 2  73 L ( 8 ) - 2 L ( 6 ) - L ( 4 ) + 2  
22 L ( 6 ) - 3 L ( 4 ) + L ( 2 ) - I  74 L ( 8 ) - 2 L ( 6 ) - L ( 4 ) + L ( 2 ) + 2  
23 L(6) - 3L(4) + L(2) + l 75 L(8) - 2L(6) - L(4) + 2L(2) + 2 
24 L ( 6 ) - 3 L ( 4 ) + L ( 2 ) + 3  76 L ( 8 ) - 2 L ( 6 ) - 3 L ( 2 ) + l  
25 L ( 6 ) -  3 L ( 4 ) + L ( 2 ) + 4  77 L ( 8 ) - 2 L ( 6 ) - 2 L ( 2 )  
26 L ( 6 ) -  3 L ( 4 ) + 2 L ( 2 ) -  3 78 L ( 8 ) - 2 L ( 6 ) - L ( 2 ) -  1 
27 L ( 6 ) - 3 L ( 4 ) + 2 L ( 2 ) - 2  79 L ( 8 ) - 2 L ( 6 ) - L ( 2 )  
28 L ( 6 ) - 3 L ( 4 ) + 2 L ( 2 ) -  1 80 L ( 8 ) - 2 L ( 6 ) - L ( 2 ) + 1  
29 L ( 6 ) - 3 L ( 4 ) + 2 L ( 2 ) + 1  81 L ( 8 ) - 2 L ( 6 ) - I  
30 L ( 6 ) - 3 L ( 4 ) + 3 L ( 2 ) - 3  82 L ( 8 ) - 2 L ( 6 ) + l  
31 L ( 6 ) -  3 L ( 4 ) + 4 L ( 2 ) - 5  83 L ( 8 ) - 2 L ( 6 ) + L ( 2 )  
32 L ( 6 ) - 2 L ( 4 ) - 2 L ( 2 ) - I  84 L ( 8 ) - 2 L ( 6 ) + L ( 2 ) + l  
33 L(6) - 2L(4) - L(2) - 2 85 L(8) - 2L(6) + L(4) - 3L(2) + 2 
34 L ( 6 ) - 2 L ( 4 ) - L ( 2 ) - - I  86 L ( 8 ) - 2 L ( 6 ) + L ( 4 ) - 2 L ( 2 ) + 2  
35 L ( 6 ) - - 2 L ( 4 ) - L ( 2 ) +  l 87 L ( 8 ) - 2 L ( 6 ) + L ( 4 ) - L ( 2 )  
36 L ( 6 ) - 2 L ( 4 ) - 2  88 L ( 8 ) - - 2 L ( 6 ) + L ( 4 ) - L ( 2 ) + 2  
37 L(6) - 2L(4) 89 L ( 8 ) -  2L(6) + 2 L ( 4 ) -  3L(2) + 3 
38 L ( 6 ) - 2 L ( 4 ) + 1  90 L ( 8 ) - L ( 6 ) -  3 L ( 4 ) -  3 L ( 2 ) -  1 
39 L ( 6 ) -  2L(4)+2  91 L ( 8 ) - L ( 6 ) -  3 L ( 4 ) - 2 L ( 2 )  
40 L ( 6 ) - 2 L ( 4 ) + L ( 2 ) -  I 92 L ( 8 ) - L ( 6 ) - 2 L ( 4 ) -  3 L ( 2 ) - 2  
41 L ( 6 ) - 2 L ( 4 ) + 2 L ( 2 ) - 2  93 L ( 8 ) - L ( 6 ) - 2 L ( 4 ) - 2 L ( 2 )  
42 L ( 6 ) - L ( 4 ) - 4 L ( 2 ) - 3  94 L ( 8 ) - L ( 6 ) - 2 L ( 4 ) - L ( 2 )  
43 L ( 6 ) - - L ( 4 ) - 2 L ( 2 ) -  1 95 L ( 8 ) - L ( 6 ) - 2 L ( 4 ) + l  
44 L ( 6 ) - L ( 4 ) - L ( 2 ) -  1 96 L ( 8 ) - L ( 6 ) - 2 L ( 4 ) + L ( 2 ) + 2  
45 L ( 6 ) - L ( 4 ) - L ( 2 )  97 L ( 8 ) - L ( 6 ) - L ( 4 ) - L ( 2 ) - I  
46 L ( 6 ) - L ( 4 ) -  1 98 L ( 8 ) - L ( 6 ) - L ( 4 ) + l  
47 L ( 6 ) - L ( 4 ) + l  99 L ( 8 ) - L ( 6 ) - L ( 4 ) + L ( 2 ) + l  
48 L ( 8 ) - 4 L ( 6 ) + 6 L ( 4 ) - 9 L ( 2 ) +  l l  100 L ( 8 ) - L ( 6 ) - L ( 2 )  
49 L ( 8 ) -  4L(6) +6L(4) - 7L(2) + 7 101 L(8)--  L(6) 
50 L(8) - 4L(6) + 7L(4) - 9L(2) + 10 102 L(10) - 2L(8) - L(6) - 3L(4) - L(2) 
51 L ( 8 ) - 3 L ( 6 ) + L ( 4 ) - L ( 2 ) + l  103 L ( 1 0 ) - 2 L ( 8 ) - L ( 6 ) -  3 L ( 4 ) + L ( 2 ) - 2  
52 L(8) - 3L(6) + L(4) - L(2) + 2 104 L(10) -- 2L(8) - L(6) - 2L(4) + L(2)--  1 
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T a b l e  2 ( c o n t i n u e d )  

1 0 5  L ( 1 0 ) -  
1 0 6  L ( 1 0 ) -  

1 0 7  L ( 1 0 ) -  

1 0 8  L ( 1 0 ) -  

1 0 9  L ( 1 0 ) -  

1 1 0  L ( 1 0 ) -  

1 1 1  L ( 1 0 )  - 
1 1 2  L ( 1 0 ) -  

1 1 3  L ( 1 0 ) -  

1 1 4  L ( 1 0 ) -  

1 1 5  L ( 1 0 )  - 

1 1 6  L ( 1 0 )  - 
1 1 7  L ( 1 0 ) -  

1 1 8  L ( 1 0 ) -  

1 1 9  L ( 1 0 ) -  

1 2 0  L ( 1 0 ) -  

1 2 1  L ( 1 0 ) -  

1 2 2  L ( 1 0 ) -  

1 2 3  L ( 1 0 ) -  

1 2 4  L ( 1 0 ) -  

1 2 5  L ( 1 0 ) -  

1 2 6  L ( 1 0 ) -  

1 2 7  L ( 1 0 ) -  

1 2 8  L ( 1 0 ) -  

2 L ( 8 )  - L ( 6 )  - L ( 4 )  - L ( 2 )  - 2 1 2 9  L ( 1 0 )  - 2 L ( 8 )  + 2 L ( 6 )  - 2 L ( 4 )  + 2 L ( 2 )  - 2 

2 L ( 8 )  - L ( 6 )  - L ( 4 )  + L ( 2 )  - -  1 1 3 0  L ( 1 0 )  - L ( 8 )  - 3 L ( 6 )  - -  3 L ( 4 )  - -  2 L ( 2 )  - 1 
2 L ( 8 )  - L ( 6 )  - L ( 4 )  + 3 L ( 2 )  1 3 1  L ( 1 0 )  - L ( 8 )  - 3 L ( 6 )  - 3 L ( 4 )  

2 L ( 8 )  - L ( 6 )  + 3 L ( 2 )  + 1 1 3 2  L ( 1 0 )  - L ( 8 )  - 3 L ( 6 )  - -  2 L ( 4 )  - L ( 2 )  - 1 

2 L ( 8 )  - 4 L ( 4 )  - 2 1 3 3  L ( 1 0 )  - L ( 8 )  - -  3 L ( 6 )  - L ( 4 )  + 2 L ( 2 )  + 1 

2 L ( 8 )  - -  3 L ( 4 )  - 1 1 3 4  L ( 1 0 )  - -  L ( 8 )  - 2 L ( 6 )  - 3 L ( 4 )  - 2 L ( 2 )  - 1 

2 L ( 8 )  - -  2 L ( 4 )  - 2 1 3 5  L ( 1 0 )  - L ( 8 )  - 2 L ( 6 )  - 3 L ( 4 )  - L ( 2 )  - 1 

2 L ( 8 )  - 2 L ( 4 )  1 3 6  L ( 1 0 )  - L ( 8 )  - 2 L ( 6 )  - 2 L ( 4 )  - 2 L ( 2 )  - 1 
2 L ( 8 )  - 2 L ( 4 )  + 2 L ( 2 )  - 2 1 3 7  L ( 1 0 )  - L ( 8 )  - 2 L ( 6 )  - 2 L ( 4 )  - L ( 2 )  - 1 

2 L ( 8 )  - L ( 4 )  - L ( 2 )  - 1 1 3 8  L ( 1 0 )  - L ( 8 )  - 2 L ( 6 )  - 2 L ( 4 )  

2 L ( 8 )  - L ( 4 )  - 1 1 3 9  L ( 1 0 )  - L ( 8 )  - 2 L ( 6 )  - 2 L ( 4 )  + L ( 2 )  
2 L ( 8 )  - L ( 4 )  + L ( 2 )  - -  2 1 4 0  L ( 1 0 )  - L ( 8 )  - 2 L ( 6 )  - L ( 4 )  - L ( 2 )  - -  1 

2 L ( 8 ) - L ( 4 ) + L ( 2 ) + 1  1 4 1  L ( 1 0 ) - L ( 8 ) - 2 L ( 6 ) - - L ( 4 )  

2 L ( 8 )  - L ( 4 )  + 2 L ( 2 )  - 1 1 4 2  L ( 1 0 )  - L ( 8 )  - 2 L ( 6 )  - L ( 2 )  - 2 

2 L ( 8 )  - L ( 4 )  + 3 L ( 2 )  - 1 1 4 3  L ( 1 0 )  - L ( 8 )  - 2 L ( 6 )  - 1 

2 L ( 8 )  - 1 1 4 4  L ( 1 0 )  - L ( 8 ) -  2 L ( 6 )  + L ( 2 )  

2 L ( 8 )  + L ( 2 )  - 1 1 4 5  L ( 1 0 )  - L ( 8 )  - 2 L ( 6 )  + 2 L ( 2 )  + 1 

2 L ( 8 ) + L ( 6 ) - 3 L ( 4 ) + 2 L ( 2 ) - 2  1 4 6  L ( 1 0 ) - L ( 8 ) - L ( 6 ) - 2 L ( 4 ) - L ( 2 ) -  1 

2 L ( 8 )  +L(6) - 2 L ( 4 )  - 1 1 4 7  L ( 1 0 )  - L ( 8 )  - -  L ( 6 )  - 2 L ( 4 )  - -  1 

2 L ( 8 )  + L ( 6 )  - 2 L ( 4 )  + 2 L ( 2 )  - 3 1 4 8  L ( 1 0 )  - L ( 8 )  - L ( 6 )  - L ( 4 )  

2 L ( 8 )  + L ( 6 )  - 2 L ( 4 )  + 2 L ( 2 )  - 1 1 4 9  L ( 1 0 )  - L ( 8 )  - L ( 6 )  - L ( 2 )  - 1 

2 L ( 8 )  + L ( 6 )  - L ( 4 )  1 5 0  L ( 1 0 )  - L ( 8 )  - L ( 6 )  

2L(8)+L(6)-L(4)+L(2)-2 1 5 1  L(IO)-L(8) -L(6)+L(4)- I  
2 L ( 8 )  + L ( 6 )  - L ( 4 )  + 2 L ( 2 )  - 2 1 5 2  L ( 1 0 )  - L ( 8 )  - L ( 4 )  + L ( 2 )  - 1 

L(n) d e n o t e s  t h e  c h a r a c t e r i s t i c  p o l y n o m i a l  o f  a l i n e a r  p o l y e n e  w i t h  n v e r t i c e s .  
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Table 3 

Factofisations found for the trees of table 1 

Structure Factors* 
number. Graphical Non-graphical 

(table 1) (table 1) (table 2) 

Structure Factors* 
number Graphical Non-graphical 

(table 1) (table 1) (table 2) 

1 1 
2 2 
3 1 4 
4 4 
5 1 1 3 
6 1 2 3 
7 1 14 
8 8 
9 2 13 

10 1 1 12 
11 1 1 2 2 
12 7 4 
12 3 14 
12 1 4 14 
13 1 2 2 2 
14 1 46 
15 3 13 
15 1 4 13 
16 1 1 3 2 
16 1 1 1 2 4 
17 1 44 
18 2 47 
19 2 45 
20 11 4 
20 1 2 3 2 
20 1 1 2 2 4 
21 21 
22 1 1 41 
23 1 1 4 2 
24 1 1 40 
25 25 
26 1 1 2 8 
27 1 3 11 
27 1 1 4 11 
28 1 3 10 
28 1 1 4 10 
29 1 4 12 
30 17 4 
30 3 44 
30 1 4 44 
31 1 2 40 
32 1 100 
33 1 2 4 2 
34 1 101 
35 1 11 3 
35 1 1 6 2 
35 1 2 5 2 
35 1 1 1 2 2 3 

36 1 98 
37 1 4 11 
38 1 2 38 
39 1 1 1 31 
40 2 3 10 
40 1 2 4 10 
41 1 2 37 
42 3 43 
42 1 4 43 
43 1 2 38 
44 1 1 1 30 
45 1 1 3 7 
45 1 1 1 4 7 
46 1 93 
47 47 
48 27 4 
48 3 3 11 
48 1 1 4 4 11 
49 49 
50 4 45 
51 2 2 39 
52 1 1 89 
53 53 
54 1 14 3 
54 5 46 
54 1 1 3 46 
55 1 1 8 2 
56 1 1 88 
57 2 96 
58 1 6 11 
58 2 5 11 
58 1 1 2 3 11 
59 1 17 3 
59 5 44 
59 1 1 3 44 
60 2 95 
61 1 1 86 
62 1 1 4 8 
63 1 1 87 
64 1 1 5 8 
64 1 1 1 1 3 8 
65 2 2 35 
66 1 1 2 2 5 
67 1 1 85 
68 68 
69 28 4 
69 3 3 10 
69 1 1 4 4 10 
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Table 3 (continued) 

Structure Factors* 
number Graphical Non-graphical 

(table 1) (table 1) (table 2) 

Structure Factors* 
number Graphical Non-graphical 
(table 1) (table 1) (table 2) 

70 4 43 
71 1 1 85 
72 1 1 86 
73 1 1 82 
74 1 1 80 
75 1 1 79 
76 1 6 10 
76 2 5 10 
76 1 1 2 3 10 
77 3 3 9 
77 1 1 4 4 9 
78 1 1 3 3 1 
78 1 1 1 1 1 4 4 
79 2 4 9 
80 1 1 76 
81 1 1 2 27 
82 1 1 4 7 
83 1 1 2 23 
84 2 15 3 
84 3 9 3 
84 1 9 3 4 
84 6 4 13 
84 2 3 3 13 
84 1 2 3 4 13 
85 43 4 
85 38 4 
85 2 3 38 
85 1 2 4 38 
86 37 4 
86 3 4 11 
86 1 4 4 11 
87 1 2 87 
88 36 4 
88 3 98 
88 1 4 98 
89 2 17 3 
89 6 44 
89 1 2 3 44 
90 1 19 3 
90 6 45 
90 1 2 3 45 
91 1 152 
92 3 99 
92 1 4 99 
93 16 14 
93 1 1 12 2 
93 1 3 7 2 
93 1 1 7 2 4 
93 1 1 3 2 14 

93 1 1 1 2 4 14 
94 7 45 
94 1 14 45 
95 17 14 
95 7 44 
95 1 14 44 
96 1 2 83 
97 1 1 1 66 
98 1 2 2 29 
99 1 8 11 

100 1 148 
101 3 96 
101 1 4 96 
102 2 6 10 
102 1 2 2 3 10 
103 6 43 
103 1 2 3 43 
104 1 26 3 
104 1 1 6 8 
104 1 2 5 8 
104 1 1 1 2 3 8 
105 1 147 
106 44 4 
106 1 1 3 30 
106 1 1 1 4 30 
107 1 25 3 
108 3 95 
108 1 4 95 
109 1 27 3 
109 3 5 11 
109 1 5 4 11 
109 1 1 3 3 11 
109 1 1 1 3 4 11 
110 1 1 3 29 
110 1 1 1 4 29 
111 1 28 3 
111 3 5 10 
111 1 5 4 10 
111 1 1 3 3 10 
111 1 1 1 3 4 10 
112 1 1 1 63 
113 1 2 77 
114 1 2 78 
115 46 4 
115 3 93 
115 1 4 93 
116 1 2 79 
117 1 146 
118 1 4 36 
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Table 3 (continued) 

Structure Factors* 
number Graphical Non-graphical 
(table 1) (table 1) (table 2) 

Structure Factors* 
number Graphical Non-graphical 

(table 1) (table 1) (table 2) 

119 3 94 
119 1 4 94 
120 1 147 
121 1 2 81 
122 1 148 
123 1 1 7 8 
123 1 1 1 8 14 
124 1 8 10 
125 1 1 1 62 
126 7 43 
126 1 14 43 
127 1 1 6 7 
127 1 2 5 7 
127 1 1 1 2 3 7 
128 1 5 36 
128 1 1 1 3 36 
129 1 137 
130 1 1 3 28 
130 1 1 1 4 28 
131 1 139 
132 1 138 
133 1 2 2 24 
134 1 1 1 62 
135 1 1 7 7 
135 1 1 1 7 14 
136 1 1 3 27 
136 1 1 1 4 27 
137 1 1 3 23 
137 1 1 1 4 23 
138 1 4 33 
139 3 91 
139 1 4 91 
140 1 1 3 22 
140 1 1 1 4 22 
141 1 2 2 23 
142 1 2 69 
143 1 135 
144 1 1 1 2 18 
145 1 134 
146 1 137 
147 1 1 1 56 
148 1 1 1 54 
149 1 131 
150 150 
151 4 97 
152 72 4 
152 61 4 
152 1 3 86 
152 1 1 4 86 

153 2 149 
154 1 31 3 
154 2 24 3 
154 1 6 40 
154 2 5 40 
154 1 1 2 3 40 
155 155 
156 156 
157 2 150 
158 56 4 
158 1 3 88 
158 1 1 4 88 
159 2 151 
160 1 1 129 
161 1 1 18 2 
161 11 47 
161 1 1 2 2 27 
162 1 1 128 
163 163 
164 1 1 2 64 
165 1 3 84 
165 1 1 4 84 
166 2 145 
167 1 1 2 64 
168 1 1 125 
169 1 1 2 65 
170 2 2 2 25 
171 26 14 
171 1 2 7 8 
171 1 1 2 8 14 
172 1 1 125 
173 2 144 
174 73 4 
174 1 3 82 
174 1 1 4 82 
175 175 
176 1 1 124 
177 1 1 127 
178 1 7 38 
178 1 1 14 38 
179 2 141 
180 1 1 122 
181 76 4 
181 1 40 3 
181 2 28 3 
181 3 6 10 
181 1 6 4 10 
181 2 5 4 10 
181 1 2 3 3 10 
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Table 3 (continued) 

Structure Factors 
number Graphical Non-graphical 

(table 1) (table 1) (table 2) 

"k 

Structure Factors 
number Graphical Non-graphical 

(table 1) (table 1) (table 2) 

181 1 1 2 3 4 10 208 
182 2 143 208 
183 73 4 208 
183 1 3 82 208 
183 1 1 4 82 208 
184 184 208 
185 1 1 123 208 
186 1 1 124 209 
187 1 41 3 210 
187 1 6 37 210 
187 2 5 37 210 
187 1 1 2 3 37 211 
188 1 1 126 212 
189 1 1 1 1 50 213 
190 1 7 37 213 
190 1 1 14 37 214 
191 1 1 120 214 
192 1 1 121 215 
193 1 1 1 6 5 216 
193 1 1 2 5 5 217 
193 1 1 1 1 2 3 5 218 
194 28 14 219 
194 1 12 10 219 
194 3 7 10 220 
194 1 7 4 10 221 
194 1 3 10 14 221 
194 1 1 4 10 14 222 
195 1 1 116 223 
196 1 1 2 60 224 
197 1 1 1 3 19 224 
197 1 1 1 1 4 19 225 
198 4 92 226 
199 81 4 227 
199 1 2 3 27 228 
199 1 1 2 4 27 229 
200 82 4 230 
200 1 3 4 7 230 
200 1 1 4 4 7 230 
201 201 231 
202 2 142 231 
203 2 136 231 
204 1 2 3 28 231 
204 1 1 2 4 28 231 
205 2 4 35 232 
206 1 1 2 4 5 233 
207 1 6 36 234 
207 2 5 36 234 
207 1 1 2 3 36 235 
208 76 4 236 

1 40 3 
2 28 3 
3 6 10 
1 6 4 10 
2 5 4 10 
1 2 3 3 10 
1 1 2 3 4 10 
2 140 

74 4 
1 3 80 
1 1 4 80 
2 143 
1 1 122 
1 2 3 29 
1 1 2 4 29 
1 3 75 
1 1 4 75 
1 1 118 
1 1 117 
1 1 119 
1 1 2 58 
1 3 74 
1 1 4 74 
1 1 113 
1 2 3 24 
1 1 2 4 24 

222 
1 1 2 59 
2 10 10 
1 1 2 10 12 
1 1 2 61 
1 1 108 
1 1 112 
1 1 115 
1 1 1 1 49 
1 6 34 
2 5 34 
1 1 2 3 34 
3 6 9 
1 6 4 9 
2 5 4 9 
1 2 3 3 9 
1 1 2 3 4 9 
1 1 111 
1 1 114 
1 1 5 27 
1 1 1 1 3 17 
1 1 2 57 
1 1 113 
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Table 3 (continued) 

Structure Factors* Structure Factors* 
number Graphical Non-graphical number Graphical Non-graphical 

(table 1) (table 1) (table 2) (table 1) (table 1) (table 2) 

237 237 262 1 3 70 
238 1 3 73 262 1 1 4 70 
238 1 1 4 73 263 1 1 1 3 15 
239 2 133 263 1 1 1 1 4 1 5  
240 1 1 2 57 264 2 132 
241 1 1 2 58 265 1 1 109 
242 1 1 8 7 266 83 4 
243 1 1 2 58 266 1 2 3 23 
244 1 3 74 266 1 1 2 4 23 
244 1 1 4 74 267 267 
245 1 1 1 3 17 268 1 1 110 
245 1 1 1 1 4 17 269 1 3 71 
246 1 1 2 53 269 1 1 4 71 
247 1 1 107 270 1 3 73 
248 1 3 72 270 1 1 4 73 
248 1 1 4 72 271 1 12 9 
249 1 1 1 3 16 271 3 7 9 
249 1 1 1 1 4 16 271 1 7 4 9 
250 1 3 68 271 1 3 9 34 
250 1 1 4 68 271 1 1 4 9 14 
251 4 90 272 1 1 106 
252 1 1 4 26 273 1 1 1 1 48 
253 1 1 105 274 1 3 68 
254 1 1 4 21 274 1 1 4 68 
255 1 2 2 6 1 275 1 7 34 
255 2 2 2 5 1 275 1 1 14 34 
255 1 1 2 2 2 1 3 276 1 1 102 
256 2 130 277 1 3 67 
257 1 2 3 4 1 277 1 1 4 67 
257 1 1 2 4 1 4 278 1 3 5 6 
258 1 2 3 20 278 1 1 5 4 6 
258 1 1 2 4 20 278 1 1 1 3 3 6 
259 1 6 33 278 1 1 1 1 3 4 6 
259 2 5 33 279 8 42 
259 1 1 2 5 33 280 1 1 2 51 
260 1 6 34 281 1 1 103 
260 2 5 34 282 1 1 2 52 
260 1 1 2 3 34 283 1 1 104 
261 1 1 2 55 284 1 7 32 

284 1 1 14 32 

A graphical factor is a polynomial which corresponds to one of the trees of table 1; a non-graphical 
factor is one which does not (table 2), In a few cases, these correspond to certain matching poly- 
nomials. 
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]0 

11 

A 

Table 4 
Trees which appear as factors of other trees (in table 3) 

. 16 ~ 41 

A 18 ~ 44 

9 3 ,  ~ 
24 ~ J  56 ~ ~  

~ 6>>_> 

3 ~ 
" ~  31 ~ 76 ~ 

36 ~ _ ~  81 ~ 

12 ~ 37 

?- 

, ~ ~  ~o -~  
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Table  5 

Trees  w i t h  no  s t r u c t u r a l  f a c to r s  

These  t rees  o f  tab le  1, w h i c h  in a few cases  are  f a c t o r s  o f  o t h e r  t rees ,  are  " p r i m e "  in t h e  sense  

t ha t  t h e y  c o n t a i n  no  o t h e r  t ree  f a c t o r s  o f  th i s  t y p e  t h e m s e l v e s .  

Ref .  no .  C ha rac t e r i s t i c  No .  o f  o t h e r  t r ees  o f  

( table  1) p o l y n o m i a l  tab le  1, i f  a n y ,  w i t h  S t r u c t u r e  

th i s  f a c t o r *  

1 1 L ( 1 )  234  

2 2 L ( 2 )  97 

3 4 L ( 4 )  21 N 

4 8 L ( 6 )  5 

21 L ( 8 )  - L ( 4 )  - L ( 2 )  

25 L ( 8 )  - 2 L ( 4 )  - 3L(2 )  - 1 1 -,/_(- 

7 47 L ( I O )  

8 49  

9 53 

L ( I O )  - L ( 6 )  - 2 L ( 4 )  - 2L (2 )  - 1 

L ( I O )  - L ( 6 )  - L ( 4 )  

cc 
,.4,_ 

10 68 L ( I O )  - 2 L ( 6 )  - 4 L ( 4 )  - 4 L ( 2 )  - 2 -kC/  
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Table 5 ( con t inued )  

Ref.  no .  

(table 1) 

Character is t ic  

p o l y n o m i a l  

No. o f  o the r  trees o f  

table 1, if any ,  wi th  

this f ac to r*  

S t ruc tu re  

11 150 

12 155 

13 156 

14 163 

15 175 

16 184 

17 201 

18 222 

19 237 

20 267 

L(12)  

L (12 )  - L(8)  - 2L(6)  -- 2L(4)  - L (2 )  

L(12)  - L(8)  - L (6 )  -- L (4 )  - L (2 )  

L(12)  - 2L(8)  - 2L(6)  + L(4)  + 2L(2)  + 1 

L ( 1 2 ) -  2 L ( 8 ) -  2L(6)  

L(12)  - 2L(8)  - 3L(6)  - 2L(4)  - 2L(2)  - 1 

L (12 )  - 2L(8)  - 4L(6)  - 5L(4)  - 4L(2)  - 1 

L(12)  - 3L(8)  - 4L(6)  + 3L(2)  + 2 

L(12)  - 3L(8)  - 5L(6)  - 3L(4)  - L (2 )  

L(12)  - 3L(8)  - 5L(6)  - 4L(4 )  - 3L(2)  - 1 

O - 0  
(-kG 

O-C/ 

*This  does  no t  include isospectral  par tners ,  wh ich  are s h o w n  in table 6. The  coun t  has no  mean ing  

for  the  12-ver tex  trees because  this  was  the  largest size examined .  
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with a non-graphical factor of  1. (These particular notional factorisations have been 
eliminated from the list shown in table 3.) All of  them factorise to a greater or lesser 
extent ,  but  factorisation does not appear to be particularly helpful in showing up 
related structures. The ordinary linear form shows three groups of  isospectral pairs 
which have a similar polynomial form: 

38/43 61/72 100/122 
67/71 180/212 

10.5/120 182/211 

L ( n ) - 2 L ( n - 4 ) - 2 L ( n - 6 ) - L ( n -  8) fo rn=  9 t o l l  
L(n) - 2L(n - 4) - 3L(n - 6 ) -  3L(n - 8) - L(n - 10) for n = 10 or 12 
L ( n ) - 2 L ( n - 4 ) -  3 L ( n - 6 ) - 2 L ( n - 8 ) - L ( n -  10) f o r n = l l  or 12 

When the first isospectral pair is factorised, it can be seen that it has a similar form to 
a fourth pair (174/183):  

38/43 L(1) .L(2) .  [ L ( 6 ) - 2 L ( 4 ) +  11 
174/173 L ( 1 ) . L ( 3 ) . [ L ( 8 ) - 2 L ( 6 ) + l ] .  

Randid et al. [17] found the same non-graphical factor L ( 6 ) -  2L(4 )+  1 in the 
isospectral pair of  trees 38 and 43. They raise the interesting speculation as to whether 
this thctor is unique. It is not:  it is also a factor of  structure 85: 

L ( 1 1 ) - L ( 7 ) - 2 L ( S ) - 3 L ( 3 ) - 2 L ( 1 )  = L(2) .L(3) .  [ L ( 6 ) - 2 L ( 4 )  + 11 , 

but this itself contains structure 38/43 as a factor. More significantly, L ( 6 ) - 2 L ( 4 )  + 1 

is also a factor o f  178 which is not related to any of  the isospectral pairs: 

L ( 1 2 ) -  3 L ( 8 ) - L ( 6 )  + 2L(4)  - L ( 2 ) - 2  = L(1).  [ L ( 5 ) - L ( 1 ) ] .  [ L ( 6 ) -  2L(4)  + 11. 

Although 38 and 43 form the smallest pair ofisospectral trees, L ( 6 ) - 2 L ( 4 )  + 1 
is not the smallest non-graphical factor which occurs among isospectral trees. L(2)  - 2 
and L(2)  - 1 are present in some, but only in conjunction with some other non- 
graphical factor. The smallest non-graphical /'actor to occur with other factors which 

are all graphical is L ( 4 ) - 2 L ( 2 ) -  1 in the structure pair 181/208: 

181/208 L(12)  - 2L(8)  - 3 L ( 6 ) - 3 L ( 4 )  - 2L(2)  - 1 = L(3). L(5). [L(4) - 2L(2)  - 11. 

(other factorisations are shown in table 6). 

This factor also is not  unique to lsospectral trees. 

3.4. THE NATURE OF NON-GRAPHICAL FACTORS OF TREES 

Table 2 lists the 152 distinct residual polynomials, all o f  even order,  found in 
the 284 trees after extracting graphical factors. By definition, none of  them can be 
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Table 7 

The most frequently occurring graphical factors 

Within table 1, some of the trees, which may or may not be prime, are factors of 
other trees. The first ten in descending order of frequency are shown here. (See also 

tables 3 and 4.) 

No. of trees 

Ref. no. Characteristic (besides itself) 
in which it is Structure 

(table 1) polynomial 
a factor 

1 1 L(1) 234 • 

2 2 L(2) 97 

3 3 L(3) 68 V 

4 L (4) 21 

5 L(4) - 1 22 , ~  

6 6 L(5) 19 

7 L ( 5 ) -  L(1) 14 

8 L(6) 5 

10 

28 

17 

L ( 8 ) -  3 L ( 4 ) -  3L(2) - 1 

L(7) - 2L(3) - 2L(1) 

5 b - -  

4 ) - ( _  
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Tab le  8 

T h e  m o s t  f r e q u e n t l y  occu r r i ng  non -g raph ica l  f ac to r s  

" N o n - g r a p h i c a l "  f ac to r s  are p o l y n o m i a l s  ( table  2)  w h i c h  are f ac to r s  o f  o n e  or  m o r e  

t rees  in table  1, b u t  w h i c h  do  n o t  r ep r e sen t  a n y  o f  t he  o t h e r  t rees  in tab le  1, The  

ten  m o s t  c o m m o n  are s h o w n  here,  

Ref .  no .  No.  o f  t r ees  in w h i c h  

( table  2)  P o l y n o m i a l  it is a fac tor  

1 4 L ( 2 )  - 1 69 

2 3 L ( 2 )  -- 2 31 

3 14 L(4 )  - L (2 )  15 

4 10 L ( 4 ) -  2L (2 )  - 1 11 

5 2 L (2 )  - 3 10 

6 11 L (4 )  - 2 L ( 2 )  7 

7 8 L ( 4 )  - 3L(2)  + 3 6 

8 7 L ( 4 )  - 3L(2)  + 2 6 

9 27 L (6 )  - 3L(4 )  + 2L(2 )  - 2 5 

10 44  L (6 )  - L ( 4 )  - L (2 )  - 1 5 

T h e  r e m a i n i n g  142 p o l y n o m i a l s  o f  table  2 each  occur  as a f ac to r  1 - 4  t imes .  
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Tab le  9 

S o m e  e x a m p l e s  o f  an  iso- or  sub - spec t r a l  r e l a t i o n s h i p  b e t w e e n  n o n - g r a p h i c a l  p o l y n o m i a l s  and  t h e  

m a t c h i n g  p o l y n o m i a l s  o f  ce r ta in  cycl ic  c o m p o u n d s  

S o m e  o f  t h e  n o n - g r a p h i c a l  p o l y n o m i a l s  o f  tab le  2 a re  iden t i ca l  or  c lose ly  r e l a t ed  to  ce r ta in  m a t c h i n g  

p o l y n o m i a l s .  Th i s  is n o t  an  e x h a u s t i v e  list b e c a u s e  t h e  m a t c h i n g  p o l y n o m i a l s  have  n o t  b e e n  s y s t e m -  

a t icaUy s t u d i e d .  T h e y  axe a r r anged  in o rde r  o f  d e s c e n d i n g  f r e q u e n c y  o f  o c c u r r e n c e  in t h e  fac to r i sa -  

t i ons  o f  t ab le  3 

Ref .  no .  N o n - g r a p h i c a l  A re la ted  m a t c h i n g  Cyc l i c  

( table  2)  p o l y n o m i a l  p o l y n o m i a l  . . . . . . . . .  f r o m  . . . . . . . . .  s t r u c t u r e  

14 L ( 4 )  - L ( 2 )  L ( 4 )  - L ( 2 )  [ I 

10 L ( 4 )  -- 2L(2 )  - 1 L ( 4 )  - 2 L ( 2 )  -- 1 [ ~  

11 L ( 4 )  - 2 L ( 2 )  L(5  ) -- L ( 3 )  - 2 L ( 1 )  

= L (1 ) .  [ L ( 4 )  - 2 L ( 2 )  l I I 

8 L ( 4 )  - 3L(2 )  + 3 

4 4  L (6 )  - L ( 4 )  - L ( 2 )  - 1 

9 L ( 4 ) -  2 L ( 2 ) -  2 

34 L (6 )  - 2 L ( 4 )  - L 2  - 1 

38 L ( 6 )  - 2L(4 )  + 1 

45  L ( 6 )  - L ( 4 )  - L ( 2 )  

43  L ( 6 )  - L ( 4 )  - 2 L ( 2 )  - 1 

L ( 6 )  - L ( 4 )  - 2 L ( 2 )  

= L ( 1 )  a . [ L ( 4 ) -  3L(2 )  + 3] 

L ( 6 )  - L ( 4 )  - L ( 2 )  - 1 

L ( 6 )  - 2 L ( 4 )  - L ( 2 )  

= [ L ( 2 ) -  l ] . [ L ( 4 ) -  2 L ( 2 )  - 21 

L ( 6 )  - 2 L ( 4 )  - L ( 2 )  - 1 

L ( 8 )  - L ( 6 )  - L ( 4 )  - L ( 2 )  

= L ( 2 ) . [ L ( 6 )  - 2 L ( 4 )  + 1] 

L ( 6 )  - L ( 4 )  - L ( 2 )  

L ( 6 )  - L ( 4 )  - 2 L ( 2 )  - 1 

i f "  

© 
® 

U" 
O- 
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Table  9 ( c o n t i n u e d )  

Re f .  no .  N o n - g r a p h i c a l  A re la t ed  m a t c h i n g  Cycl ic  

( t ab le  2)  p o l y n o m i a l  p o l y n o m i a l  . . . . . . . . .  f r o m  . . . . . . . . . . . . .  s t r u c t u r e  

12 L ( 4 )  - 2 5 ( 2 )  + 2 L ( 5 )  - L ( 3 )  I ~  

5 ( 1 ) .  [L(4)  - 2L(2 )  + 21 t , , , /  

13 L ( 4 )  - L ( 2 ) -  1 L ( 4 ) -  L ( 2 ) -  1 ~ - -  

39 L ( 6 )  - 2 / , (4 )  + 2 L(8)  - L ( 6 ) -  L(4 )  
= L ( 2 ) . [ L ( 6 )  - 2L(4 )  + 2] 

55 / , ( 8 )  - 3 5 ( 6 )  + 2L(4)  -- 3 5 ( 2 )  + 2 L ( 9 )  - 2L(7 )  - L ( 5 )  - L ( 3 )  - L ( 1 )  I "  " ~ ' ~  

= L ( 1 ) . [ L ( 8 )  - 3 5 ( 6 )  + 2 5 ( 4 ) - -  3L(2 )  + 2] k, ,x# 

69  L ( 8 )  - 2 L ( 6 )  -- L ( 4 )  - L ( 2 )  - 1 / , ( 8 )  - 2 5 ( 6 )  - L ( 4 )  - L ( 2 )  - 1 

70  L ( 8 )  - 2 L ( 6 )  - L ( 4 )  - L ( 2 )  L ( 8 )  - 2 L ( 6 )  -- L ( 4 )  - L ( 2 )  C ~  

90  L ( 8 )  - L ( 6 )  - 3L (4 )  - 3L(2 )  - 1 L ( I O )  - 2 L ( 8 )  - L ( 6 )  - L ( 4 )  - L ( 2 )  - 1 [ ! | 

= [L(2 )  -- 2]  . [ 5 ( 8 )  - L ( 6 ) - -  3L(4 )  -- 3L(2 )  - 1] 

150  L ( 1 0 )  -- L ( 8 )  - L ( 6 )  L ( 1 0 )  -- L ( 8 )  - L ( 6 )  C ~  

101 L ( 8 )  -- L ( 6 )  L ( 8 )  - 5 ( 6 )  C ~  ] 

94  L ( 8 )  - L ( 6 )  - 2 5 ( 4 )  - L ( 2 )  L ( 8 )  - L ( 6 )  - 2 5 ( 4 )  - L ( 2 )  C ~  
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represented by any of the graphs considered here. An intriguing property of these 
polynomials is that some of them are the same as, or are closely related to, the acyclic 
(or matching) polynomials of certain cyclic or polycyclic structures. Table 9 shows 
some illustrative examples. 

These examples are not exhaustive; they were found by trial and error, without 
as yet any systematic search of cyclic structure polynomials. They raise two interesting 
questions. Are all the non-graphical factors found related to some cyclic structure in 
this way? The answer is probably not, since several of the order four polynomials 
appear to have no match within the limited range of small cyclic structures, although 
it might still be the case that they are factors of some larger system. Conversely, is the 
matching polynomial of  a polycyclic structure, or some factor within it, always a 
factor of some tree? Here again, at first sight the answer appears to be no, because it 
is easy to find a polycyclic structure whose matching polynomial does not appear 
in the list of  table 2. On the other hand, it has been shown [40,41] that for any 
cyclic or polycyclic graph, one finds the matching polynomial as a factor of the 
associated tree introduced by Randid [42] as an auxilliary scheme for counting paths 
of different lengths. It is likely that the range of graphs considered needs to be enlarged 
(e.g. to include 4-valent vertices) to find a match, and it is possible that some matching 
polynomials have not been fully factorised under this brief examination. 

A final fascinating and unsolved mathematical problem is this: given a string 
whose elements represent the coefficients of a linear combination of characteristic 
polynomials of chains, is it possible to write a generalised string expression which 
will yield all the polynomials with real zeros, and only those polynomials? 

The analysis reported here shows that there are a number of families of related 
trees whose members are united by a common non-graphical polynomial factor which 
in some cases can be represented as the acyclic polynomial of some ring-containing 
structure. Usually, such a family shows regularity in the pattern of its factorised 
polynomials to a greater or lesser degree and, when there is a well marked pattern, 
the non-graphical polynomial will occupy a nodal point within the family. Table 10 
shows some examples of this. 

A corollary of these results is that it is possible to express certain acyclic 
(matching) polynomials in an unconventional form as a quotient of trees. These poly- 
nomials are used to provide a reference for calculating topological resonance energies 
[43]. This calculation appears to be disliked and mistrusted by some practical chemists 
on the grounds that the acyclic polynomial is unreal and cannot be visualised. It is 
problematic whether a quotient of trees can be thought of as any less abstract and 
"unreal", but if appropriate seeming ratios could be chosen, it might provide the basis 
for a slightly more helpful notation. 

In the case of the simplest cyclic compounds, the annulenes, the acyclic 
polynomial of  an n-membered ring is L(n) - L ( n  - 2). This can be expressed as the 
ratio L(2n - 1)/L(n - 1). The acyclic polynomial [L(6) - L ( 4 ) ]  of benzene is thus 
L(ll)/L(5). This polynomial [L(6) - L ( 4 ) ]  does not appear in table 2 because it 
factorises as [L(2) - 1]. [L(4) - L ( 2 )  - 1], but its occurrence as this product may be 
seen in table 3. 
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Table 10 

Some trees related by common acyclic polynomial factors 

This table shows some groups of  structures which are united by a common non-graphical factor 
related to an acyclic (matching) polynomial.  In some cases, the polynomial occupies a nodal 
position in a group which forms a family of  structures; in other  groups, there is little obvious pattern. 
The factored forms of  characteristic polynomials shown are taken from table 3, and reference 

numbers refer to table 1 unless noted otherwise. 

1. Non-graphical factor P = L(4) - 3L(2) + 3 (ref. 8 in table 2) 

L(1)  2 . P is the ACYCLIC polynomial of  ~ - ~  

26 L(2).L(I)2.P ~ C  64 [L(4)-I].L(1)~.P ~ 

104 L(5).L(1)2.P 

• . . 104 

171 

L ( 1 ) . L ( 2 ) . [ L ( 4 )  - 1 ] . P  

Z,(1 ). L(2). [ r,(5) - Z,(1)]. P 

2. Non-graphical factor P = L(4) - 2L(2) - 1 (ref. 10 in table 2) 

L(4) - 2L(2) - 1 is the ACYCLIC polynomial of  1 ~  

28 L(1).L(3).P ~ '~  40 L(2).L(3).P 
,2--  

76 L(1).L(5).P ~ 69 L(3).L(3).P 

124 L(1).L(6).P 

194 L(1).L(7).P -by, 

102 L(2).L(5).P 

181/208 L(3).L(5).P 
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Table 10 (continued) 

76 L(2) . [L(4)-  I ] .P  ~ _ ~  111 L(3) . [L(4)-  1].P 

224 L(2) , [L(6)-L(2)  I .P ~ 194 L ( 3 ) , I L ( 5 ) - L ( I ) I . P  

3. Non-graphical factor P = L(4) - 2L(2) - 2 (ref. 9 in table 2) 

[L(2) - 1 ] .P is the ACYCLIC polynomial of [ ~  

79 L(2).L(4).P ~ 271 L(1).L(7).P 
- f 

231 L(3).L(5).P 

4. Non-graphical factor P = L(4) -- L(2) - 1 (reference 13 in table 2) 

P is the ACYCLIC polynomial of 

9 L(2).P 

15 L(3).P ~ . _  

5. Non-graphical factor P = L(6) - L(4) - L(2) - 1 (ref. 44 in table 2) 

P is the ACYCLIC polynomial of 

17 L(1).P ~ - - ~  

30 L(3).P / ~  

89 L(5).P 

59 [L(4) -  11.P 

95 [L(5) - 1].P ->,27- 
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Tab le  10 ( c o n t i n u e d )  

6. N o n - g r a p h i c a l  f ac to r  P = L ( 4 )  - L ( 2 )  (ref.  14 in t ab le  2)  

P is t he  A C Y C L I C  p o l y n o m i a l  o f  I " - - 1  

a n d  u n i t e s  a m o r e  c o m p l e x  g r o u p  w i t h  f ew p a t t e r n s  

7 L ( 5 ) -  L ( 1 )  = L ( 1 ) . P  

12 L ( 7 )  = L ( 3 ) . P  

93 L ( 1 1 ) -  2 L ( 7 ) + L ( 3 )  = [L (7 )  - 2L(3)1  . P  

95 L ( l l )  - 2 L ( 7 )  - 2 L ( 5 )  + L ( 3 )  + 2L(1 )  = [L(7 )  - 2 L ( 3 )  - 2 L ( 1 ) ] .  P 

123 L ( l l )  - 3L(7 )  - 2L (5 )  + L ( 3 )  + 2L(1 )  = L ( 1 ) ~ . [ L ( 4 ) -  3L(2 )  + 3 ] . P  

126 L ( l l )  - 3L(7 )  - 3L(5 )  + L ( 3 )  + 3L (1 )  = L ( 1 ) . [ L ( 6 ) -  L ( 4 )  - 2L(2 )  - 1 ] . P  

135 L ( l l )  - 4 L ( 7 )  - 4 L ( 5 )  + L ( 3 )  + 4 L ( 1 )  = L ( 1 )  3 . [ L ( 4 ) -  3L(2 )  + 2 ] . P  >% 
2-- 

171 L ( 1 2 )  -- 2 L ( 8 )  - 3L (6 )  - L ( 4 )  + 2L(2)  + 1 = [L(8 )  - 2 L ( 4 )  -- 3L(2 )  - 2 ] .  P ~ - " ~  
= L ( 1 ) 2  L (2). [L (4) - 3L(2)  + 31.  P _:x_{ 

178 L ( 1 2 ) - 3 L ( 8 ) - L ( 6 ) + 2 L ( 4 ) - L ( 2 ) - 2  = L ( 1 ) 2 . [ L ( 6 ) - 2 L ( 4 ) + l ] . P  
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Table 10 (continued) 

190 L(12) - 3L(8) - 2L(6) + L ( 4 )  - 1 = L(1) :  . [L(6) - 2L(4)1. P 

194 L(12) - 3L(8) - 3L(6) + L ( 2 )  

271 L(12) - 4L(8) - 4L(6) + L ( 2 )  

= [L(8) - 3 5 ( 4 ) -  3 L ( 2 ) -  1 ] . P  " ~  ~ 

=L(1).5(3).[L(4) - 25(2) - 1 ] . P  o _ r  
= L ( 1 ) : . [ 5 ( 2 )  - 1] . [ 5 ( 4 ) -  25(2) - I ] . P  

=L(1 )2 . [L(2 )  - 1 ] . [ L ( 4 ) -  2L(2) - 2 ] . P ~  

Table 1 1 

Some trees which have cyclic factors 

These are simple illustrative examples; they do not form an exhaustive list. This 
type of  factorisation is o f  particular interest in that it represents the only kind 
discovered so far that yields factors that  are all capable of  a graphical representat ion.  
In this table, R(n) denotes  the characteristic polynomial  o f  a cycle, i.e. 

L(n) - L(n - 2) - ( -  1)n.2 

Refs. are to table 1 : 

11 L(6) - 25(2)  - 1 

13 L(7) - L(3) - 2L(1) 

16 L ( 7 ) -  2L(3) 

= R ( 4 ) . 5 ( 2 )  

= R(6) .L(1 )  

= R(4 ) .L (3 )  

23 L ( 8 ) -  2L(4) + 1 = R(4) .L(4)  

35 L ( 9 ) - 2 L ( 5 ) + L ( 1 )  = R(4).L(5) 
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3.5. THE RELATIONSHIP BETWEEN TREES AND RING-CONTAINING STRUCTURES 

In the previous section, the occurrence of  non-graphical factors common to 
both trees and ring-containing structures was commented on. It is well known that  
tree factors occur too. Perhaps the simplest example is that of  an annulene. A 2n + 2 
membered ring contains L(n) as a factor [2,44] ,  and this is only one example of  
many [2]. 

The converse situation, where a ring is a factor of  a tree, also happens, but 
seems to have been less remarked upon. Table 11 shows a few examples of this, and 
the subject of  factoring ring-containing structures, and of  factoring trees in terms of  
ring-containing structures, is under more extensive investigation. The examples of  
table 11 are of  particular interest because, unlike the factorisations obtained by the 
systematic extraction of  trees reported here, factorisation in terms of  rings seems 
often to yield factors which are all graphical. The implication of this, that certain 
cyclic graphs also can be expressed as a ratio of  trees, is difficult to relate to a visual 
concept. 

A p p e n d i x  

Several of  the lists shown or referred to are also available in computer-readable 
form from the author's institution at a small charge for costs. These are the structure 
codes and characteristic polynomials (table 1); N-tuple codes of  table 1 (not shown); 
lists of  non-graphical polynomials (table 2), and the factorisation references shown 
in table 3. A standard 128 byte length record is used for each entry, on a 5.25 inch 
diskette in IBM-PC format. 
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