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Abstract

Characteristic polynomials of the set of 284 trees which have 1 —12 vertices of
valency 1-3 have been examined for possible factors (divisors) using polynomial
division. Twenty of these trees are prime in the sense that they contain no other
trees in the set as factors. The remaining 264 trees can all be constructed from a
subset of 5 trees and a set of 152 non-graphical polynomials. Some of these poly-
nomials exhibit iso- or sub-spectral relationships with acyclic (matching) poly-
nomials of certain cyclic structures. A few cyclic factors of trees are noted briefly.
Twenty pairs and one triad of the trees examined are isospectral.

1. Introduction

The search for factors of a polynomial, especially of the characteristic poly-
nomial of a graph, is seductive and intriguing. Common factors suggest structural
relationships, and several related families of structures have been noted [1]. These
may be a useful means of classification for information storage and retrieval; they may
yield simpler or more revealing ways of expressing the polynomial, and they can aid
graph recognition. One might also expect that structural relationships of this kind
would be reflected in some connectivity related physicochemical properties, although
in practice so far this does not appear to be so [2—4].

Another reason to search for factors is that polynomials can be difficult to
solve and, because this difficuity tends to increase with size, a decomposition into a
product of smaller polynomials can help towards an accurate solution. This is com-
paratively unimportant for a characteristic polynomial because its zeros can also be
obtained as the eigenvalues of an adjacency matrix. For others, such as acyclic (or
matching) polynomials however, it could offer a significant advantage.

Whatever the immediate utility of factorisation, the relationships it seems to
show are remarkable and worthy of exploration. The characteristic polynomial (CP)
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is always expressed here as a linear combination of characteristic polynomials of linear
chains. For example, the CPs of pentadienyl and of 2-methylbutadienyl are written as
L(5) and L(5)—L(1). respectively. Randic [1,5] has pointed out that chemists have
rather neglected this useful and elegant notation, and has put it to good use himself.
It has tended to be used only for intermediate calculations, although it has also been
used explicitly [6].

In this paper, a graph is not distinguished from its characteristic polynomial
(CP). The term graphical factor is used to denote a polynomial factor of a polynomial
which itself corresponds to the characteristic polynomial of some other graph. The
term non-graphical factor is used to denote a polynomial factor for which no such
corresponding structure has been recognised. The latter term is applied even if there
is some ‘artificial” graph with weighted vertices and/or edges which can be drawn
to express the characteristic polynomial.

The term factor can itself cause confusion: its use in connection with a number
or a polynomial Is obvious, but in connection with a graph, the word is often used for
a different concept: that of a spanning sub-tree. For factor in the sense used here, the
term Front Divisor has been used [7]. Throughout this paper. however, the word
factor is used in its general and better known sense in all cases.

Factorisation is an open-ended task unless arbitrary limits are placed on the
kinds of factors which are acceptable. For example, when factoring integers one
generally restricts the results to those which are products of integers. Here we define
the task of factoring chemical graphs and their polynomials as that of extracting one
or more graphical factors, leaving a residual polynomial which may or may not be
graphical.

Even this is not an easy problem. It is difficult to devise algorithms for de-
ducing factors, and especially to devise ones which will find, and will be known to
find, all possible factors of the class defined. Some progress has been made with
structures which have an obvious symmetry. King [8] examined a number of poly-
hedral structures: McClelland [9] devised a useful method for exploiting local sym-
metries in a molecule, and early work on graphical decompositions, pioneered by
Heilbronner [10], often incidentally suggested factors. The recognition of the phe-
nomenon of sub-spectrality was a recognition that common factors occur [2,3,8,
11—14]. More recently, McWorter [15] used the Frobenius matrix to construct the
characteristic polynomial: a method which gives an opportunity for obtaining some
factors. Randic and his coworkers developed this, and work by Balasubramanian [16],
into a method for factorising trees which they called "“ultimate pruning” [17]. This
bypasses gradual pruning and starts at once with a 2 X 2 determinant whose elements
are fragments of the initial tree. By choosing alternative forms of the “‘ultimate
determinant”, it is possible to see common factors in a row or column, and these will
be factors of the original polynomial. This method does not always provide a complete
factoring, but it has the considerable advantage over some approaches that the factor-
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ing is not necessarily symmetry related. It is though, in its present form. confined to
trees.

A recently published paper on the computation of the characteristic polynomial
[18] refers to Krylov’s method [19]. This sometimes yields a factor of the desired
characteristic polynomial. and we wondered if this could form the basis of a method
for factoring. However, preliminary trials have not been promising; it is too capricious
and unreliable.

We have adopted a less subtle approach to the problem, and in a previous
paper [20], the technique of polynomial division was described and a few arbitrarily
chosen examples shown. This is simply the division of one polynomial into another
to test whether the one is a factor of the other; for if it is, it will leave no remainder.
Such an elementary test now has practical use because of two recent developments:
(i) the availability of small computers which can be easily programmed to perform
the rather tedious task of polynomial division quickly and accurately, and (ii) the
discovery of practically useful methods for evaluating the characteristic [21 —25] and
acyclic [26,27] polynomials.

A fundamental weakness of this method (although it is not alone in this
respect) is that there is no assurance of completeness. It will only confirm or reject
possible factors that have been considered and thought appropriate to test. On the
other hand, modern computer technology makes the extensive testing and searching
of lists much more practicable than before. The method is also very powerful in
another sense: it is not confined to any particular class of graph (e.g. to trees or
polycyclics). nor to any particular kind of polynomial. A final point of interest is
that polynomial division appears occasionally to show up the occurrence of a factor
that is ignored by other methods [20].

This paper focusses upon a certain set of acyclic structures (trees): those which
have 1—12 vertices and valencies in the range 1-3. This particular set was chosen
because it includes graphs of conjugated hydrocarbons, and a recent publication [28]
provides a complete ordered list of its members. It is also a list of manageable size
(284 members) for use with a standard (IBM) personal computer.

2. Method used

2.1, CODING A STRUCTURE FOR COMPUTER USE

Quite a lot of work has been done on the development of efficient codes for
computer use, and a recent paper by Balaban et al. [29] gives a useful and up to date
review of the subject. Their own method is based on hierarchically ordered extended
connectivities.

The numbers in one triangular half of an adjacency matrix provide all the
connectivity information required for a code. Since, however, there are n! possible
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adjacency matrices for any given structure with n vertices, the code will be more
useful if one particular adjacency matrix can be defined. Randic [30—33] chose
the one which, when the rows of elements are read sequentially, gives the smallest
binary number. Hendrickson and Toczko used a similar scheme but preferred maximal
numbering of the adjacency matrix [34]. For trees, the “N-tuple” representation
published from Zagreb and Diisseldorf can be used [28]. These all provide a unique
code for a particular structure. The N-tuple code can be extended to cyclic structures
along lines recently outlined by Randic [35].

Although the N-tuple code is very attractive, and is in principle easy to con-
struct, the author has not found it particularly convenient to use for the typing of
extensive lists of structures. This is mainly because it does take time, and it is not
always easy immediately to recognise transcription errors. So for practical purposes,
in this study we have chosen to forego the benefit of a unique representation in
favour of one which is very simple to encode and decode, and which makes immediate
use of the information presented. In this method, the n-vertex structure is, by an
appropriate numbering, regarded as some deviation from a linear n-vertex system.
Only the system size and the connections which define deviations from linearity need
to be recorded. The structure so defined is unique. There are many possible codes
which could define it with equal validity, but only a few will be of the same minimum
length. For these fairly simple structures, it is quite easy to choose a minimal number
of fragments by inspection.

22. PRACTICAL CODING RULES

Encoding (fig. 1 shows an example):

(1) Count the (n) vertices and set the first code element to this number.

(2) If the structure is nonlinear, then break it into as few as possible linear
fragments by marking appropriate connections to be broken. It does not
matter if the number of linear fragments produced is not minimal, although
it will lengthen the code needlessly if it is not.

Structure is >__2—C

4 9 8
1 §5y—-—--(10
Codeis12 3—-4 7-8 2—-6 5-10 :
2)-- ¢ nn
3 7

Fig. 1. An example of structure encoding.
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(3) Number the whole assembly, which forms a disconnected graph, with the
vertices of each fragment being numbered consecutively.

(4) Record each pair of vertices which, in comparison with a consecutively
numbered linear chain of n vertices, has a connection made or deleted.

It follows from this description that every code will be an odd length string of
numbers. The set of 284 trees considered here can all be encoded with 13 or fewer
numbers.

Decoding (fig. 2 shows an example):

(1) Read the first code element n and draw a sequence of # dots numbered
consecutively.

(2) Read each subsequent pair of numbers. If they are consecutive, then mark
the pair of numbered dots as not connected; otherwise draw a connection.

Codeis12 3-4 2-44-54-67-8 7-9

[ ]
1

~e

[
3

-0

[
5 6

~e

[ J
8

e

[
[N § B ¥

Structure is

T

Fig. 2. An example of decoding.

(3) Draw in the remaining unmarked consecutive connections.
(4) If necessary, redraw the graph to “straighten” the bonds and give a more
conventionally arranged structure.
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23. DERIVATION OF CHARACTERISTIC POLYNOMIALS

The computer file of 284 structure codes was read by a program which converts
each code into the corresponding adjacency matrix, and converts this into its character-
istic polynomial using “Frame’s method"” [21—25,36] . Each characteristic polynomial
was stored and manipulated in the form of a string of coefficients which represents a
linear combination of characteristic polynomials of linear polyenes. Computer
programs are described in refs. [22,24,25]. This method for the characteristic poly-
nomial, which involves a succession of matrix multiplications to give traces which bear
a simple relationship to the coefficients, was brought to the attention of chemists by
Balasubramanian [21] and ascribed by him to Frame [36]. Recently, Barakat [37]
has shown that the so-called Frame’s method is “nothing but symmetric functions
and Newton’s identities”. For a comment on the solution of Newton’s identities,
see Randic’s paper [38].

24. TESTING BY DIVISION FOR POSSIBLE FACTORS OF POLYNOMIALS

The tool for this work is a program which examines a file of polynomials under
test (file A), and against each one it tries each member of a second reference list of
possible polynomial factors (file B). If division leaves no remainder, then a factor has
been found; it is tried again on the quotient until division fails, and then moves on to
try the next possible factor on the original polynomial. Each factor (with its power if
it divides more than once), together with the residual polynomial after extraction from
the file A polynomial, forms a record in a new file C.

The residual polynomials in file C are examined for duplicates, sorted, and
themselves examined for factors in the same way to produce a new file of factors
and residual polynomials, and so on. To aid searching and recognition, lists of non-
graphical polynomials were sorted each time they were assembled. The list is first
grouped in ascending order of n. It is then successively sorted on the basis of the
magnitude of each coefficient from n — 1 to 0. If this is done, it is easy to search a
printed list by eye for a particular polynomial. if required. After a few such iterations,
a file of residual polynomials is obtained which do not contain any file B factors. For
this particular case, file A and file B start out as being identical, although the entries
in file B actually examined can be restricted to those of the same or lower order than
the polynomial being divided. A file B polynomial which is of the same order will
only show up a factor if it is isospectral (quotient = 1).

For this list of 284 characteristic polynomials, four iterations were needed to
fully extract all structural factors. The records in each file were given pointers to
enable successive factorisations to be traced through. The combination of these lists
of file records can thus be regarded as sets of trees where every path represents a
possible factorisation, and where a number of redundancies will occur because a new
ordering of factors will be regarded as a new factorisation. This may be illustrated by
fig. 3, where the results of the factorisation of structure number 257 are shown.
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Although the residual polynomials obtained by this process no longer contain
graphical factors, it was found that a number of them are actually products of others
in the same list. The first list of 245 residual non-graphical polynomials was therefore
tested against itself in a similar manner, and a final “irreducible"” list of 152 obtained.

Table 3 shows the final list of factorisations obtained when duplicates are
eliminated. The lists shown in tables 1 -3 are also available in computer-readable
form:see appendix.

3. Discussion

31. RESULTS

Table 1 lists all the trees considered (1 —12 vertices; valency 1-—3) together
with their characteristic polynomials. The 284 trees follow the same sequence as is
given in ref. [28], but in reverse order for each system size. In the table, each tree
is shown as a code, from which its structure can be reconstructed. Within this paper.
a given structure is referred to by its list number given in table 1. The methods of
calculation used are given in the methods section above.

Table 2 lists the 152 non-graphical polynomial factors which remained when
all graphical factors had been extracted from the polynomials of table 1, and table 8
shows those which occur most frequently.

Table 3 shows, as a set of reference numbers, the unique factorisations ob-
tained. each one being the product of one or more graphical factors with one or
more non-graphical factors. The graphical factors shown are not all prime, because
many of them can themselves be factorised, as can be seen by inspection of the list
in table 3. Graphical factors are listed in table 4, and table 7 shows the ten which
occur most frequently. Twenty of the polynomials are prime (see below), and are
listed in table 5. Of these twenty, fifteen represent trees which could neither be
factorised themselves nor used to build other trees. (This last fact has, of course,
no significance for the trees of order 12, since that was the largest size examined.)

It follows from table S that the ultimate list of graphical factors is quite small and
consists of only five polynomials: L(1), L(2). L(4), L(6).and L(8)—2L(4)—-3L(2)—1.
Thus, the table 1 list of 284 characteristic polynomials consists of 20 which are
unfactorisable (by the tool applied), plus 264 which can all be expressed as some
product from 5 graphical and 152 non-graphical factors.

32. PRIME TREES

Prime means (here) not divisible by any of the other trees of table 1. The
20 prime trees found (table 5) do not seem to show any consistent relationships among
themselves. Structures 21: CP=L(8)~L(4)~L(2)and 53:CP = L{10) —L(6)~L(4)are
an obviously related pair, but the third member of this series [159: CP = L(12) —L(8)
—L(6)] is factorisable.
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All even length chains are prime except for L(8), and this polynomial is an
interesting absentee from the list of table 5. Randic et al. [17] state that even length
chains have no factors of similar parity. This is not quite correct, for L(8) may be
factorised as L(2).[L(6) — L(4) + 1]. It is easy to verify that L(2) is a factor of the
series L(6/V + 8). The first few members are shown below and form a simple recurrent
sequence.

L(8)=L(2). [L(6) — L(4) +1]
L(14)=L(2). [L(12) — L(10) +L(6) — L(4) +1]
L(20) = L(2). [L(18) — L(16) +L(12) — L(10) +L(6) — L(4) +1]
L(26) = L(2). [L(24) — LQ22) +L(18) — L(16) +L(12) — L(10) +L(6) — L(4) +1]

L(32) =L(2).[(L(30)~ L(28) +L(24) ~ L(22) + L(18) — L(16) +L(12) — L(10) + L(6) — L(4) +1]

If L(2) is regarded as having the notional factorisation L(2).(1), then the
sequence can be generalized to L(6/N + 2). This can be shown in algebraic terms:

The division of L(n) by L(2) can be expressed as

L(n)/L2) = L(n—2) —L(n—4) + L(n—6)/L(2),

which can be rewritten as

L(n+6)/L(2) = L(n+4) — L(n+2) + L(n)/L(2).

If L(2)isa factor of L{n), then it is a factor of

L(2).[L(n+4) = L(n+2)] + L(n),

which evaluates to L(n + 6). Using n = 2 for the first factorisable chain gives

the recurrent sequence shown.

This extraction of an L(2) factor illustrates the power of this method to show
factors which may otherwise be overlooked. In the case of L(8), it is evident from
published eigenvalues [39] that L(2) must be a factor, and this fact may also be
deduced graphically. If Heilbronner’s technique [10] is applied to the second bond
of octatetraene, theresult L(8)=L(2).L(6)— L(1).L(5)isobtained. L(5), pentadienyl,
can be seen from its symmetry to have a factor L(2). Therefore, 1(2) is a factor of
L(8).

33. ISOSPECTRAL TREES

Table 6 shows the isospectral trees which occur in the set examined (20 pairs
and 1 triad). They are easily detected by the scheme described, for if a tree has an iso-
spectral partner, it will show one factorisation as a single graphical factor reference
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Non-graphical polynomial factors found for the trees of table 1

O 0o~ N h B B e

L(2)—4

L2)-3

L(2)-2

L2)~-1
L#A)-4L(2)+6
L4)-3L(2)

LAY -3L(2)+2

L{4) - 3L(2)+3
L{4)-2L(12) -2

L4y - 2L(2) -1
L{4)-2L(2)
L@4)y-2L(2)+2
L4)-L2)-1

L) - L(2)

L(6) —4L(4)+5L12)-6
L(6)—-4L4)+5L(2) -4
L(6)—4L(4)+5L(2) -3
L(6)-4L4)+6L(12) -8
L(6)—-4L4)+6L12)—-6
L(6)—3L(4)+2
L(6)-3L(4)Y+L2)-2
L(6) -3L(4)+L(2)-1
L(6) -3LA)+L(D+1
L) —-3L4)+L(2)+3
L) - 3L &)y +L () +4
L(6) - 3L(4)+2L(2)-3
L(6) - 3L(4)+2L(22) -2
L(6)—-3L$)+2L(2) -1
L(6) - 3L4)+2L (D +1
L(®)-3L4)+3L(2)-3
L(6)-3L{(4)+4L(32) -5
L{6) —2L(4) —2L(2) -1
L(6) -2L(4) - L(2)-2
L{6) -2L(4) - L) -1
L6y —2L(4) —L(2)+ 1
L(6) —2L(4)~-2

L{6) ~ 2L(4)

L(6) -2L(4)+1
L{6)-2L(4)+2

L) -2L4)+L(2) -1
L(6) -2L(4)+2L(2)~2
L(6)—-L@4)—-4L(2)-3
L(6) —L(4)-2L(2)-1
L6)—-L#4)-L(2)-1
L{6) ~L@4)~L(2)
L(6)—-L#4) -1

L(6) —L{4)+1

L(8) —4L(6)+6L(4) -9L(2)+ 11
L(B)—~4L(6)Y+6L(4) - TL(2)+ 7
L(8) —4L(®6)Y+TL(4) - 9L(D)+10
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L(8) —3L(6)+L(4)+L(2)
L(B)—3L(6)+2L(4) —4L(2)+4
L(8)—-3L(6)+2L(4)—-3L(2)+2
L(8) — 3L(6)+2L(4)—2L(2)Y+2
L(8)—3L(6)+2L(4)—2L(2)+3
L@B)~3L(6)+2L(4)—L(2)+1
L(8)—3L6)+2L(4)—L(D+2
L(8)~3L6)+2L(4) -1

L(8) — 3L(6) +2L(4)
L(8)~3L(6)+3L(4)—-4L(2)+5
L(8)—3L(6)+3L(4)—-3L(2)+3
LB)—-3L(6)+3L@4)-2L(2)+2
L@B)-3L6)+3L4)-L2)-1
L(8)—-3L(6)+4L(4) - 5L(2)+6
LB)-2L(6)—2L(4)+1

L(8) —2L(6) —2L(4)+L(2)+2
L{8)-2L(6)—L(@4)—-L(2)~1
L(B)—-2L(6) - L{4)—L(2)
L(8)—2L(6) —L(4)— L(2)+2
L8)—2L(6) - L#&)

L(8) - 2L(6)—L(4)+2
LB)—-2L(6)—LM@)Y+L(2)+2
L(8) — 2L(6) — L(4) + 2L(2) + 2
L)~ 2L(6)-3L(2)+1

L(8) - 2L(6) —2L(2)

L8) - 2L(6)~L(2)-1

L(8) - 2L(6) - L(2)
L(B)Y-2L(6)-L(2)+1
L(8)-2L(6) -1
L®B)-2L6)+1
L(8)—2L(6)+L(2)
LB)-2L6)+L(+1
L(8)—2L(6)+L(4)—3L(2)+2
L(8) - 2L(6)+L(4)-2L(2)+2
L(8)Y-2L(6)+L(4)-L(2)
L@B)~2L(6)+ L)~ L(2)+2
L8Y-2L(6)+2L(4)~3L(2)+3
L(BY—L(6)—-3L(4)—-3L(2)-1
L(8)— L(6)— 3L(4) - 2L(2)
LB)—L(6)—2L(4)-3L(2)-2
L(8) - L(6)~2L(4)—-2L(2)
L@B)Y-L(6)—-2L(4)~ L{2)

L(8) - L{(6) - 2L(4)+ 1

L(B) - L(6)—-2L(4)+L(2)+2
LB -L6)~L4)-L(2)-1
LB)—L(6)-L(4)+1
LB)-L(6Y—LA)+L(2)+1
L8)Y—L(6)— L(2)

L(8) — L(£)

L(10)—-2LB)—~ L6 -3L#A)-L2)
LA0)Y—-2L8)Y—-L(6)-3L@)Y+L(2)-2
LA0)—2L8)—- L6 -2LA)+L(2)-1
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Table 2 (continued)
105 L(10) —2LB) - L(6) —L(4)-L(2)~2 129 L(10) —2L(8)+ 2L(6) —2L(4)+2L(2) -2
106 L(10)—-2L8) - L(6) —L@A)+L(2)-1 130 L(10) - L(8) - 3L(6) —3L(4)—~2L(2) -1
107 L(10) —2L(8) —~ L(6) — L(4) +3L(2) 131 L(10) — L(8) —~ 3L(6) — 3L(4)
108 LQ0) -2L(8)—-L(®6)+3L(2)+1 132 L(10) -~ L(8) - 3L(6) —2L(4) - L(2) -1
109 L{10) —2L(8)—4L(4) -2 133 LA0)—L(B)—-3L(6) - L&) +2L(D+ 1
110 L(10) —2L(8) —~3L(4) -1 134 L(10)~ L(8) -~ 2L(6) - 3L(4)—2L(2) -1
111 L30)—-2L(8)—-2L(4) -2 135 L(10) = L(8) —2L(6) - 3L(4)—-L(2) -1
112 L(10) — 2L(8) — 2L(4) 136 L(10) - L(8) — 2L(6) —2L(4) - 2L(2) -1
113 L(10) —2L(B8) - 2L(4)+2L(2) -2 137 L0y~ L(8) - 2L(6) — 2L (4) - L(2) — 1
114 L0 -2L8)-L4)-L(2)-1 138 L(10)— L(8) — 2L(6) — 2L(4)
115 L(10) —2L8)—L(4) —1 139 £(10) — L(8) — 2L(6) — 2L(4)+ L(2)
116 L(10) - 2L(8) — L(4)+L(2) -2 140 L(10) - LB)-2L(6) - L(@) - L(2) -1
117 L(10) - 2LB) - L&)+ L(2)+ 1 141 L(10) — L(8) — 2L(6) — L(4)
118 L(10) - 2L(8) - L(4)+2L(2) -1 142 L) -~ L@B) - 2L(6) - L(2) -2

119
120
121
122
123
124
125
126
127
128

LA - 2LB®)y—LM@)+3L(2) -1
L(10)-2LB) -1

LA0)-2LB)Y+L(2) -1

L(0) - 2L(8)+L(6) - 3L(4)+2L(2) -2
L{10) - 2L(8Y+L(6) —2L(4) -1

L(10) —2L(8)+L(6) —2L(4)+2L(2) -3
L{10) -2L(8)+L(6) -2L(H)+2L(2) -1
L(10) - 2L(8) + L(6) — L(4)

L(10) - 2LB)+L(6) - LAY +L(2)-2
L0 -2LB)+L(6) - L&) +2L(2)-2

143
144
145
146
147
148
149
150
151
152

L(10)-L@B)—-2L(6)-1

L(10) - L@B)~2L®B)Y+L(Q2)

L(10) - L(8) - 2L(6)+2L(2) +1
L(10)-L®B)—-L(6)—2L(4)-L(2)~-1
L(10) - L(8) — L{6) — 2L(4) -1

L(10) — L(B) — L(6) — L(4)
L(A0)—L@B)-L(6)-L(2)-1

L(10) - L(8) - L(6)

LA - L@B)Y—LG)+LM@) -1

LA -LB - LA +L2)-1

L(n) denotes the characteristic polynomial of a linear polyene with » vertices.
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Table 3
Factorisations found for the trees of table 1
Structure Factors* Structure Factors*
number.  Graphical Non-graphical number  Graphical Non-graphical
(table 1)  (table 1) (table 2) (table 1)  (table 1) (table 2)
1 1 36 1 98
2 2 37 1 4 11
3 1 4 38 1 2 38
4 4 39 1 1 1 31
5 1 1 3 40 2 3 10
6 1 2 3 40 1 2 4 10
7 1 14 41 1 2 37
8 8 42 3 43
9 2 13 42 1 4 43
10 1 1 12 43 1 2 38
11 1 1 2 2 44 1 1 1 30
12 7 4 45 1 1 3 7
12 3 14 45 1 1 1 4 7
12 1 4 14 46 1 93
13 1 2 2 2 47 47
14 1 46 48 27 4
15 3 13 48 3 3 11
15 1 4 13 48 1 1 4 4 11
16 1 1 3 2 49 49
16 1 1 1 2 4 50 4 45
17 1 44 51 2 2 39
18 2 47 52 1 1 89
19 2 45 53 53
20 11 4 54 1 14 3
20 1 2 3 2 54 5 46
20 1 1 2 2 4 54 1 1 3 46
21 21 55 1 1 8 2
22 1 1 41 56 11 88
23 1 4 2 57 2 96
24 11 40 58 16 11
25 25 58 25 11
26 1 1 2 8 58 1 1 2 3 11
27 1 3 11 59 117 3
27 1 1 4 11 59 5 44
28 1 3 10 59 1 1 ) 3 44
28 1 1 4 10 60 2 95
29 1 4 12 61 1 1 86
30 17 4 62 1 1 4 8
30 3 44 63 1 1 87
30 1 4 44 64 1 1 5 8
31 1 2 40 64 1 1 1 3 8
32 1 100 65 2 2 35
33 1 2 4 2 66 1 1 2 5
34 1 101 67 11 85
35 111 3 68 68
35 1 1 6 2 69 28 4
35 1 2 5 2 69 3 3 10
35 1 1 1 2 2 3 69 1 1 4 4 10



196 E.C. Kirby, The factorisation of chemical graphs

Table 3 (continued)

Structure Factors™ Structure Factors*

number  Graphical Non-graphical number  Graphical Non-graphical

(table 1) (table 1) (table 2) (table 1) (table 1) (table 2)
70 4 43 93 1 1 1 2 4
71 1 1 85 94 7 45
72 1 1 86 94 1 14 45
73 1 1 82 95 17 14
74 11 80 95 7 44
75 1 1 79 95 1 14 44
76 1 6 10 96 1 2 83
76 2 5 10 97 1 1 1 66
76 1 1 2 310 98 1 2 2 29
77 3 3 9 99 1 8 11
77 1 1 4 4 9 100 1 148
78 1 1 3 3 1 101 3 96
78 1 1 1 1 1 4 4 101 1 ‘ 4 96
79 2 4 9 102 2 6 10
80 1 1 76 102 1 2 2 3 10
81 1 1 2 27 103 6 43
82 1 1 4 7 103 1 2 3 43
83 1 1 2 23 104 1 26 3
84 2 15 3 104 1 1 6 8
84 3 9 3 104 1 2 5 8
84 1 9 3 4 104 11 1 2 3 8
84 6 4 13 105 1 147
84 2 3 3 13 106 44 4
84 1 2 3 4 13 106 1 1 3 30
85 43 4 106 1 1 1 4 30
85 38 4 107 1 25 3
85 2 3 38 108 3 95
85 1 2 4 38 108 1 4 95
86 37 4 109 1 27 3
86 3 4 11 109 3 5 11
86 1 4 4 11 109 1 5 4 11
87 1 2 87 109 1 1 3 3 11
88 36 4 109 11 1 3 4
88 3 98 110 1 1 3 29
88 1 4 98 110 1 1 1 4 29
89 2 17 3 111 1 28 3
89 6 44 111 3 5 10
89 1 2 3 44 111 1 5 4 10
90 119 3 111 1 1 3 3 10
90 6 45 111 1 1 1 3 4
90 1 2 3 45 112 1 1 1 63
91 1 152 113 1 2 77
92 3 99 114 1 2 78
92 1 4 99 115 46 4
93 16 14 115 3 93
93 1 1 12 2 115 1 4 93
93 1 3 7 2 116 1 2 79
93 11 7 2 4 117 1 146
93 1 1 3 2 14 118 1 4 36
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Table 3 (continued)

Structure Factors* Structure Factors*
number  Graphical Non-graphical number  Graphical Non-graphical
(table 1)  (table 1) (table 2) (table 1)  (table 1) (table 2)
119 3 94 153 2 149
119 1 4 94 154 1 31 3
120 1 147 154 2 24 3
121 1 2 81 154 1 6 40
122 1 148 154 2 5 40
123 1 1 7 8 154 11 2 3 40
123 11 1 8 14 155 155
124 1 8 10 156 156
125 1 1 1 62 157 2 150
126 7 43 158 56 4
126 1 14 43 158 1 3 88
127 1 1 6 7 158 1 1 4 88
127 1 2 5 .17 159 2 151
127 1 1 1 2 3 7 160 11 129
128 1 5 © 36 161 1 1 18 2
128 1 1 1 3 36 161 11 47
129 1 137 161 1 1 2 2 27
130 1 1 3 28 162 1 1 128
130 1 1 1 4 28 163 163
131 1 139 164 1 1 2 64
132 1 138 165 1 3 84
133 1 2 2 24 165 1 1 4 84
134 11 1 62 166 2 145
135 1 1 7 7 167 11 2 64
135 1 1 1 7 14 168 1 1 125
136 1 1 3 27 169 1 1 2 65
136 1 1 1 4 27 170 2 2 2 25
137 1 1 3 23 171 26 14
137 1 1 1 4 23 171 1 2 7 8
138 1 4 33 171 1 1 2 8 14
139 + 3 91 172 1 1 125
139 1 4 91 173 2 144
140 1 1 3 22 174 73 4
140 1 1 1 4 22 174 1 3 82
141 1 2 2 23 174 11 4 82
142 1 2 69 175 175
143 1 135 176 1 1 124
144 11 1 2 18 177 1 1 127
145 1 134 178 1 7 38
146 1 137 178 1 1 14 38
147 1 1 1 56 179 2 141
148 11 1 54 180 1 1 122
149 1 131 181 76 4
150 150 181 1 40 3
151 4 97 181 2 28 3
152 72 4 © 181 3 6 10
152 61 4 181 1 6 4 10
152 1 3 86 181 2 5 4 10
152 1 1 4 86 181 1 2 3 3 10
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Table 3 (continued)
Structure Factors* Structure Factors*
number  Graphical Non-graphical number  Graphical Non-graphical
(table 1) (table 1) (table 2) (table 1) (table 1) (table 2)
181 1 1 2 3 4 10 208 1 40 3
182 2 143 208 2 28 3
183 73 4 208 3 6 10
183 1 3 82 208 1 6 4 10
183 1 1 4 82 208 2 5 4 10
184 184 208 1 2 3 3 10
185 1 1 123 208 1 1 2 3 4 10
186 1 1 124 209 2 140
187 1 41 3 210 74 4
187 1 6 37 210 1 3 80
187 2 5 37 210 1 1 4 80
187 1 1 2 3 37 211 2 143
188 1 1 126 212 1 1 122
189 11 1 1 50 213 1 2 3 29
190 1 7 37 213 1 1 2 4 29
190 1 1 14 37 214 1 3 75
191 1 1 120 214 1 1 4 175
192 1 1 121 215 1 1 118
193 1 1 1 6 5 216 1 1 117
193 1 1 2 5 5 217 1 1 119
193 1 1 1 1 2 3 5 218 1 1 2 58
194 28 14 219 1 3 74
194 1 12 10 219 1 1 4 74
194 3 7 10 220 1 1 113
194 1 7 4 10 221 1 2 3 24
194 1 3 10 14 221 1 1 2 4 24
194 1 1 4 10 14 222 222
195 1 1 116 223 1 1 2 59
196 1 1 2 60 224 2 10 10
197 1 1 1 3 19 224 1 1 2 10 12
197 1 1 1 1 4 19 225 1 1 2 61
198 4 92 226 1 1 108
199 81 4 227 1 1 112
199 1 2 3 27 228 1 1 115
199 1 1 2 4 27 229 1 1 1 49
200 82 4 230 1 6 34
200 1 3 4 7 230 2 5 34
200 1 1 4 4 7 230 1 1 2 3 34
201 201 231 3 6 9
202 2 142 231 1 6 4 9
203 2 136 231 2 5 4 9
204 1 2 3 28 231 1 2 3 3 9
204 1 1 2 4 28 231 1 1 2 3 4 9
205 2 4 35 232 1 1 111
206 1 1 2 4 5 233 1 1 114
207 1 6 36 234 1 1 5 27
207 2 5 36 234 1 1 1 3 17
207 1 1 2 3 36 235 1 1 2 57
208 76 4 236 1 1 113
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Table 3 (continued)
Structure Factors* Structure Factors*
number  Graphical Non-graphical number  Graphical Non-graphical
(table 1)  (table 1) (table 2) (table 1)  (table 1) (table 2)
237 237 262 1 3 70
238 1 3 73 262 1 1 4 70
238 1 1 4 73 263 1 1 1 15
239 2 133 263 1 1 1 4 15
240 1 1 2 57 264 2 132
241 1 1 2 58 265 1 1 109
242 1 1 8 7 266 83 4
243 11 2 58 266 1 2 3 23
244 1 3 74 266 1 1 2 4 23
244 1 1 4 74 267 267
245 1 1 1 3 17 268 1 1 110
245 1 1 1 1 4 17 269 1 3 71
246 1 1 2 53 269 1 1 4 71
247 1 1 107 270 1 3 73
248 1 3 72 270 1 1 4 173
248 1 1 4 72 271 1 12 9
249 1 1 1 3 16 271 3 7 9
249 1 1 1 1 4 16 271 17 4 9
250 1 3 68 271 1 3 9 34
250 1 1 4 68 27 1 1 4 9 14
251 4 \ 90 272 1 1 106
252 1 1 4 26 273 1 1 1 48
253 1 1 105 274 1 3 68
254 1 1 4 21 274 1 1 4 68
255 1 2 2 6 1 275 1 7 34
255 2 2 2 5 1 275 1 1 14 34
255 11 2 2 2 1 3 276 1 1 102
256 2 130 277 1 3 67
257 1 2 3 4 1 2717 1 1 4 67
257 11 2 4 1 4 278 1 3 5§ 6
258 1 2 3 20 278 1 1 5 4 6
258 1 1 2 4 20 278 1 1 1 3 6
259 1 6 33 278 1 1 1 3 4 6
259 2 5 33 279 8 42
259 1 1 2 5 33 280 i1 2 51
260 1 6 34 281 1 1 103
260 2 5 34 282 1 1 2 52
260 1 1 2 3 34 283 11 104
261 1 1 2 55 284 1 7 32
284 1 1 14 32

A graphical factor is a polynomial which corresponds to one of the trees of table 1; a non-graphical
factor is one which does not (table 2). In a few cases, these correspond to certain matching poly-

nomials.
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Table §

Trees with no structural factors

These trees of table 1, which in a few cases are factors of other trees, are “prime” in the sense
that they contain no other tree factors of this type themselves.

Ref. no. Characteristic No. of other trees of
(table 1) polynomial table 1, if any, with Structure
this factor™
1 1 L(1) 234 °
2 2 L) 97 -
3 4 L{4) 21 AN
4 8 L6 5 " dhd
5 21 L) - L®) - LQ) —>—\_J
6 25 L8) ~2L(4) - 3L(2) -1 1 —>_.<—
7 47 L(10) NN
8 49 L(10) — L(6) — 2L(4) —= 2L(2) - 1 CC/
9 53 L(10)— L(6) — L(4) C(\:
10 68 L(10) — 2L(6) — 4L(4) — 4L(2) -2 —>_C'j
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Table 5 (continued)
Ref. no. Characteristic No. of other trees of
(table 1) polynomial table 1, if any, with Structure
this factor®

11 150 L(12) Y Ve e Vv
12 155 L{12) —L(8) — 2L(6) — 2L(4) —~ L(2) Q—D
13 156 L(12) -~ L(8) - L(6)~L(#4)— L(2) <_->—Q
14 163 L(12)-2LB)-2L6)+L(A) +2L(2)+ 1 —>—\_/—z
15 175 L(12)-2L(®) - 2L(6) —>"'\_<_>
16 184 L(12)—-2L(8) - 3L(6)~2L(4)-2L(2) -1 _>:>3
17 201 L(12) ~ 2L(8) —4L(6) —5L(4)~-4L(2) -1 <—>—‘C/
18 222 L(12) - 3L(8) — 4L(6) +3L(2) + 2 —>—'<__>"\
19 237 L(12)~ 3L(8) — 5L(6) — 3L(4) — L(2) 7—2—2
20 267 L(12) - 3L(8) —~ 5L(6) —4L(4)-3L(2)~-1 ->'_$__/‘—\

*This does not include isospectral partners, which are shown in table 6. The count has no meaning
for the 12-vertex trees because this was the largest size examined.



203

E.C. Kirby, The factorisation of chemical graphs

op1 621 (17~ W77~ (9T — (T~ (ODTI' (DT =
(DTT —(TE ~ (TP —(VTE~ DT 9p1  6T1
bel 71 [S+ @1 —(MTE+(DTE —(DT] (DT =
IAINnA ¢ (DT+(T- (DT —(VTE —(ADT €1 STI
0zt co1 T~-W1t (DT (T —(ODT]" (DT =
£ ¢ (D7 —(©)TT — (7€ — (DTt -~ (IDT 021 SO1
7 -(@7-)7T-(ODTI(DT=
AI\IVIA cet Y/I.O oot (OT- (DT - WTT~(ADT Tl 001
I L9 [2+@TE - WWT+ (T —(R)T] (DT =
ﬁN\A \lle\ 1= (T~ WTe - @OTL-0ODT 1L L9
zL 19 T+ @I~ WT+@HTT—(9T] (DT =
/I\IVIA QT-WTT-OTT—-ODT L 19
[T+WT1T - @71 (T (DT=
.\\IVIA & 8t (DT- (DT~ (HTL—(OT €¥ 8¢
soIn1onIIg punoj s10joej pue (1 919%1)
rerrouAjod onsusiovIey) ‘Sou "oy

T 21qe? ur SuULIIN2)0 $3913 [B1)00dsos]

g 9lqeL



f chemical graphs

01 o,

E.C. Kirby, The factorisat

204

[t —@re W11 11 - @7 [t ~ @717 DT =

1 -@1t - W1l - @17 @7 (D7T=
[t-@1t~ W11 - @Q71' [ - w1171 =
h-@1t =W 1 - @717 (DT=

80¢ 181 [T @7 = WTI(S)T ()T =
iz-@1l 1~ @71 —~ (W7 — BT T =
[z —@7) UDTE ~ ()T — (T — ()T (DT =
[T - @1 [1+(W7e = (97¢ —(OD7T] =
1-(7 ~W1¢ — (7€ — (VT — (DT 807 181 €1
iz 081 (2~ (DTT +(MTE ~ (DT +(RTL —WODT] (DT =
(DT~WTE—(PT¢ —(RNTT— (DT 1T 081 Tl
981 oL1 (e~ (OTT+WTT (9T +(8)TL = ODT] (DT =
1-QT-WT- DI - @7 - DT 98T 9l 1T
[1+(9717 —(T]()T (DT =
€81 pLT [T+ @1 - (71" [1 - (V7] (DT=
(DT~ W77 — (9T —(8)7C — (21T €81 #LT 01
L 991 [T @I+ WTC = (DT + T —(ODT) (DT =
1+@OT+ T DT~ (T~ (@ZDT LT 89T 6
L9T ¥ol [+ @7~ WTE+(NTE ~ B®)T] (DT ADT=
T+@QT2+ QT (PTT- QDT 9T 9T 8
saimonng punoj slojoej pue .: a[qe1)
rerwouAjod systeloeIvy) Sou "joy

(panunu09) 9 3[qe],



205

E.C. Kirby, The factorisation of chemical graphs

[E+WT—- T - ®TI()T(DT=
0Le 8€7 [2+WT - DT - @®TI'[1 - (DT} ADT =
- @70~ (NTE — Ty~ (8)Te — TD)T  0LT 8¢ 61
obT cez [+ @7t~ WIT+(9TE — (DT (DT (DT =
T+(DT+WTE ~(9)7S — (7€ —(ZNT  0OvT SstT 81
h-@1- W1 - @111 - W1](DT=
[I=-@Q7T- W7 —(TIH(DT(DT=
092 0¢T [1-@7T- W1t - 1]t~ @11 @7 (DT=
-7~ TS~ (9T — (T~ DT 097 0fz LI
IvlleI\ 95z 02z [T~ @TT+WMTT (T~ (ODT] (DT =
WTIT—(PTYy — (7€ ~(ZVT  9¢T 0TT 91
T+ @QT+WT- QT —®TI ()T (DT =
b IAIV..A.I\ 617 g+ @T+®T— (977 - TV 1 - (7] (DT =
(WT—(PT¢ -~ (VTE—(TDT  v¥T 61T SI
£ e \.A.....A|v o8l (1~ (972~ ()T - DT (DT =
¢ (DT —WMTT— (97 —®TZ — (DT 11T T8 1
som1onng punoj sioloej pue .S a1qel)
jetwoufjod snsirajoerey) SOU " Joy

(panunuod) 9 s[qeL



E.C. Kirby, The factorisation of chemical graphs

206

[1+@T~ WTL+ (DT~ (RTI(DT A(DT=

tve e lAlVlA..lu 8l 14+ ()T +(WTT — (9Th — (RTE — (TDT €47 16T 81T 1T
[T+ @QT+ W1~ (DT~ (DT (O)T(NT=
vLT 05t g+ @QT1+WTC =T~ (7] [1 - (7] ADT=
1 - (@77 -7 — (DTS —(Ty — (TD7 ¥LT 0ST 0T
somyonilg punoj siojoej pue (1219®)
rerwouAjod o13s1I010BIRYD) ‘Sou "Joy

(panunuod) 9 3qe]



E.C. Kirby, The factorisation of chemical graphs 207

with a non-graphical factor of 1. (These particular notional factorisations have been
eliminated from the list shown in table 3.) All of them factorise to a greater or lesser
extent, but factorisation does not appear to be particularly helpful in showing up
related structures. The ordinary linear form shows three groups of isospectral pairs
which have a similar polynomial form:

38/4361/72100/122 L(n) —2L(n = 4) - 2L(n - 6) — L(n — 8) forn= 9toll
67/71180/212 Ln)~2L(n—-4)~3L(n -6)—3L(n-8)~L(n-10)forn=100r 12
105/120 182/211 L(n)—2L(n—4) ~3Ln - 6)—~2L(n —8)~ L(n—10)forn=110r12

When the first isospectral pair is factorised, it can be seen that it has a similar form to
a fourth pair (174/183):

38/43  L(1).L(2). [L(6) —2L(4)+ 1]
174/173  L(1).L(3). [L(8) - 2L(6) + 1].

Randic et al. [17] found the same non-graphical factor L(6)—2L(4) + 1 in the
isospectral pair of trees 38 and 43. They raise the interesting speculation as to whether
this factor is unique. It is not: it is also a factor of structure 85:

L) =L(7)=2L(5)=3L(3)=2L(1) = L(2).L(3). [L(6)=2L(4)+ 1] ,

but this itself contains structure 38/43 as a factor. More significantly, L(6)—2L(4) + 1
is also a factor of 178 which is not related to any of the isospectral pairs:

L(12)=3L(8)~L(6) + 2L(4)~L(2) =2 = L(1). [L(5) = L(1)] . [L(6) = 2L(4) + 1].

Although 38 and 43 form the smallest pair of isospectral trees, L(6)—2L(4) + 1
is not the smallest non-graphical factor which occurs among isospectral trees. L(2) —2
and L(2) — 1 are present in some, but only in conjunction with some other non-
graphical factor. The smallest non-graphical factor to occur with other factors which
are all graphical is L{4)—2L(2)~1 in the structure pair 181/208:

181/208 L(12)=2L(8)=3L(6)~3L(4)~=2L(2)~1 = L(3).L(5). [L(4)-2L(2)~-1].

(other factorisations are shown in table 6).
This factor also is not unique to isospectral trees.

34 THE NATURE OF NON-GRAPHICAL FACTORS OF TREES

Table 2 lists the 152 distinct residual polynomials, all of even order, found in
the 284 trees after extracting graphical factors. By definition, none of them can be
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Table 7

The most frequently occurring graphical factors

Within table 1, some of the trees, which may or may not be prime, are factors of
other trees. The first ten in descending order of frequency are shown here. (See also
tables 3 and 4.)

No. of trees
Ref. no. Characteristic (besides itself)
(table 1) olynomial in which it is Structure
Py a factor

1 1 L(1) 234

2 2 L(2) 97

3 3 L(3) 68

4 4 L4) 21

5 5 L@4) 1 22
6 6 L(5) 19

7 7 L(5)—-L() 14

9 28 L@B)y-3L(4)-3L(2)—-1 N

10 17 L(7y—-2L(3) - 2L(1) 4

A
>_\
e
od
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Table 8

The most frequently occurring nongraphical factors

“Non-graphical” factors are polynomials (table 2) which are factors of one or more
trees in table 1, but which do not represent any of the other trecs in table 1. The
ten most common are shown here.

Ref. no. No. of trees in which
(table 2) Polynomial it is a factor
1 4 L) -1 69
2 3 L()-2 31
3 14 L(4) - L(2) 15
4 10 L(4)—2L(2) -1 11
5 2 L(2) -3 10
6 11 L(4)-2L(2) 7
7 8 L(4) - 3L(2)+3 6
8 7 L(4)-3L(2)+2 6
9 27 L(6) ~ 3.4+ 2L(2)-2 5
10 44 L6)—-L4)—-L(12)-1 5

The remaining 142 polynomials of table 2 each occur as a factor 1 —4 times.
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Table 9

Some examples of an iso- or sub-spectral relationship between non-graphical polynomials and the
matching polynomials of certain cyclic compounds

Some of the non-graphical polynomials of table 2 are identical or closely related to certain matching

polynomials. This is not an exhaustive list because the matching polynomials have not been system-

atically studied. They are arranged in order of descending frequency of occurrence in the factorisa-
tions of table 3

Ref.no. Non-graphical A related matching Cyclic
(table 2) polynomial polynomial . ........ from......... structure
14 L@4)-L(2) L(4) —~ L(2)

10 L) -2L(2)-1 L4)y-2L(2)-1

11 L&) -2L(Q2) L(5) = L(3) - 2L(1)
=L(1).[L(4) - 2L(2)]

8 LM4)-3L(2)+3 L(6) — L(4) — 2L(2)
=L{1)*.[L(4) = 3L(2) + 3]

44 L(6)-L(4)-L(2)~1 L6)—-LM@4)-L(2)~1

9 L@4)-2LQ)-2 L(6) — 2L(4) - L(2)
=[{LQ2)-1].[L(4) - 2L(2) - 2]

3 L(6)-2L(4)~L2-1 L(6)-2L(4)—-L(2)~1

38 L(6)—2L(4)+1 L(8) ~ L(6) — L(4) — L(2)
=L(2).[L(6) — 2L(4) + 1]

45  L(6)—L#4)~L(2) L(6) — L&)~ L(2)

QC%@CD[&I:DIZJD

43 L(6)~L(@4)-2L(12)-1 L(6)~L@4)—-2L(2)-1
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Table 9 (continued)

Ref. no. Non-graphical A related matching Cyclic
(table 2) polynomial polynomial ......... from............. structure
12 L@4)y-2L(2)+2 L(GS)-L(3)

13

39

55

69

70

90

94

101

150

L4y -L2)-1

L(6)-2L4)+2

L(8) — 3L(6) +2L(4) — 3L{(2)+ 2

L@B)-2L(6)—~LMA)-L(2)-1

L(8)—2L(6) — L(4) — L(2)

L(8)~L(6)-3L(4)-3L(2)-1

L(8)—L(6)—-2L(4)y-L(2)

L(8) — L(6)

L(10) - L(8) - L(6)

L(1).[L4) - 2L(2) + 2]

Ld)y-L(2)-1

L(8) - L(6)—L4)
=L(2).[L(6) — 2L(4) + 2]

L(9)— 2L(7) - L(5)—L(3) - L(1)
=L(1).[L(8) — 3L(6) + 2L(4) — 3L(2) + 2]

L(B)-2L(6)- L&) ~L2)-1

L(8) — 2L(6) —~ L(4) - L(2)

L(10)—-2L(8)~L(6)~ L&)~ L(2)-1
=[L(2)—2].[L@B)— L(6)~ 3L(4) - 3L(2) — 1]
L(B8)— L(6)—2L(4) —~ L(2)

L(@8)—L(6)

L{10) — L(8) — L{6)

{3998988Q70
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represented by any of the graphs considered here. An intriguing property of these
polynomials is that some of them are the same as, or are closely related to, the acyclic
(or matching) polynomials of certain cyclic or polycyclic structures. Table 9 shows
some illustrative examples.

These examples are not exhaustive; they were found by trial and error, without
as yet any systematic search of cyclic structure polynomials. They raise two interesting
questions. Are all the non-graphical factors found related to some cyclic structure in
this way? The answer is probably not, since several of the order four polynomials
appear to have no match within the limited range of small cyclic structures, although
it might still be the case that they are factors of some larger system. Conversely, is the
matching polynomial of a polycyclic structure, or some factor within it, always a
factor of some tree? Here again, at first sight the answer appears to be no, because it
is easy to find a polycyclic structure whose matching polynomial does not appear
in the list of table 2. On the other hand, it has been shown [40,41] that for any
cyclic or polycyclic graph, one finds the matching polynomial as a factor of the
associated tree introduced by Randic¢ [42] as an auxilliary scheme for counting paths
of different lengths. It is likely that the range of graphs considered needs to be enlarged
(e.g. to include 4-valent vertices) to find a match, and it is possible that some matching
polynomials have not been fully factorised under this brief examination.

A final fascinating and unsolved mathematical problem is this: given a string
whose elements represent the coefficients of a linear combination of characteristic
polynomials of chains, is it possible to write a generalised string expression which
will yield all the polynomials with real zeros, and only those polynomials?

The analysis reported here shows that there are a number of families of related
trees whose members are united by a common non-graphical polynomial factor which
in some cases can be represented as the acyclic polynomial of some ring-containing
structure. Usually, such a family shows regularity in the pattern of its factorised
polynomials to a greater or lesser degree and, when there is a well marked pattern,
the non-graphical polynomial will occupy a nodal point within the family. Table 10
shows some examples of this.

A corollary of these results is that it is possible to express certain acyclic
(matching) polynomials in an unconventional form as a quotient of trees. These poly-
nomials are used to provide a reference for calculating topological resonance energies
[43]. This calculation appears to be disliked and mistrusted by some practical chemists
on the grounds that the acyclic polynomial is unreal and cannot be visualised. It is
problematic whether a quotient of trees can be thought of as any less abstract and
“unreal”, but if appropriate seeming ratios could be chosen, it might provide the basis
for a slightly more helpful notation.

In the case of the simplest cyclic compounds, the annulenes, the acyclic
polynomial of an n-membered ring is L(n) — L(n — 2). This can be expressed as the
ratio L(2n — 1)/L(n — 1). The acyclic polynomial [L(6) — L(4)] of benzene is thus
L(11)/L(5). This polynomial [L(6) — L(4)] does not appear in table 2 because it
factorises as [L(2) —1].[L(4) —L(2) — 1], but its occurrence as this product may be
seen in table 3.
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Table 10

Some trees related by common acyclic polynomial factors

This table shows some groups of structures which are united by a common non-graphical factor

related to an acyclic (matching) polynomial. In some cases, the polynomial occupies a nodal

position in a group which forms a family of structures;in other groups, there is little obvious pattern.

The factored forms of characteristic polynomials shown are taken from table 3, and reference
numbers refer to table 1 unless noted otherwise.

1. Non-graphical factor P = L(4) — 3L(2) + 3 (ref. 8 in table 2)

L(1). P is the ACYCLIC polynomial of D_(

26 L(2).L().P )—C 64 (L@4)—1].L(1).P >"> >"‘
62 L(4).L().P >‘>_> 123 [L(5) - L(1)].L(1). P M
104 L(5).L(1)*.P r>_>_>

...104 L().LQ2). (L4 - 1].P

171 L. L(2).[L(5) — L(1)]. P /_>—\_C

2. Non-graphical factor P = L(4) — 2L(2) —~ 1 (ref. 10 in table 2)

L(4) — 2L(2) — 1 is the ACYCLIC polynomial of [NJ)

28 L(1).L(3).P 40 L(2).L(3).P

76 L(1).L(5).P 69 L(3).L(3).P

194 L(1).L(7).P 181/208 L(3).L(5).P

124 La).L(6).P —>—<_>— 102 LQ2).L(5).P b /
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Table 10 (continued)

111 L3).[L@&) - 1].P >:>_>._
194 L(3).[L(5) - L(1)].P —>—>_>—\

3. Non-graphical factor P = L(4) — 2L(2) — 2 (ref. 9 in table 2)

76 L(2).[L(4)~1].P

224 L(2).[L(6) — L(2)].P

P

[L(2) — 1].Pis the ACYCLIC polynomial of G

271 L().L(7).P >—$_/'<

79 L(2).L(4).P

231 L(3).L(5).P

P

4. Non-graphical factor P=L(4) — L(2) — 1 (reference 13 in table 2)

P is the ACYCLIC polynomial of

Y

9 L(2).P

1S L(33).p

Y

5. Non-graphical factor P=L(6) — L(4) — L(2) — 1 (ref. 44 in table 2)

Pis the ACYCLIC polynomial of D/\
17 L(1).P >—<_ 59 [(L4)-1].P

30 L(3).P /:>‘> 95 [L(5)—1].P —>_\:>_
e )
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Table 10 (continued)
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6. Nongraphical factor P = L(4) ~ L(2) (ref. 14 in table 2)

12

93

95

126

135

171

178

P is the ACYCLIC polynomial of D
and unites a more complex group with few patterns

L{5) - L(1) =L1).P

L) =L(3).P

L(11) — 2L(T)Y + L(3) =[L(T)-2L(3)].P

L(11) - 2L(7) — 2L(5) + L(3) + 2L(1) =[L(7) - 2L(3) - 2L(1Y]. P

L(11) - 3L(7) - 2L(5)+ L(3) + 2L(1) =L(1)Y.[L(4)-3L(2)+3].P
L(11) = 3L(7) - 3L(5) + L(3) + 3L(1) =L().[L(6)—-L@)-2L(2)-1].P
L(11) —4L(7) - 4L(5)+ L(3) +4L() =L(1)*.[L(4) - 3L(2)+2].P
L(12)~2L(8) - 3L6)— L&) +2L()+1 =[L(B)—-2L(4)-3L(2)-2].P

=L(1)*. L(2).[L(#) - 3L(2)+3].P

L(12) - 3L(8) — L(6)+2L(4) - L(2) -2 =L(1)*.[L(6)-2L(4)+1].P

AN AR
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Table 10 (continued)

190 £(12) — 3L(8) - 2L(6)+L(4) -1 =L(1)*.[L(6) - 2L(4)].P

194 £(12) — 3L(8) — 3L(6) + L(2) =[L(8) - 3L(d)-3L2)~1].P
=L(1).L(3).[L(4) - 20(2) ~ 1].P
=L(1)*.[L(2) - 1].[L@4) = 2L(2) - 1].P

Y

271 L(12) - 4L(@8) —4L(6)+ L(2) =L{1)?.[L(2) - 1).[L(4) - 2L(2) - 2].P

<

Table 11

Some trees which have cyclic factors

These are simple illustrative examples; they do not form an exhaustive list. This
type of factorisation is of particular interest in that it represents the only kind
discovered so far that yields factors that are all capable of a graphical representation.
In this table, R(n) denotes the characteristic polynomial of a cycle, i.c.

L{n) —L(n—2)— (- 1)*.2

Refs. are to table 1:

11 L(6)y~-2L(2)~1 = R(4).L(2) >"‘<

13 LTy~ L(3)~2L(1) = R(6).L(1) /j\
16 L(7)-2L(3) = R(4).L(3) \rY
23 L@8)—-2L4)+1 = R(4).L(#) >—\_<
35 L9)-2L(5)+L(1) = R(4).L(5) >"\_>—
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35. THE RELATIONSHIP BETWEEN TREES AND RING-CONTAINING STRUCTURES

In the previous section, the occurrence of non-graphical factors common to
both trees and ring-containing structures was commented on. It is well known that
tree factors occur too. Perhaps the simplest example is that of an annulene. A 2n + 2
membered ring contains L(n) as a factor [2,44], and this is only one example of
many [2].

The converse situation, where a ring is a factor of a tree, also happens, but
seems to have been less remarked upon. Table 11 shows a few examples of this, and
the subject of factoring ring-containing structures, and of factoring trees in terms of
ring-containing structures, is under more extensive investigation. The examples of
table 11 are of particular interest because, unlike the factorisations obtained by the
systematic extraction of trees reported here, factorisation in terms of rings seems
often to yield factors which are all graphical. The implication of this, that certain
cyclic graphs also can be expressed as a ratio of trees, is difficult to relate to a visual
concept.

Appendix

Several of the lists shown or referred to are also available in computer-readable
form from the author’s institution at a small charge for costs. These are the structure
codes and characteristic polynomials (table 1); N-tuple codes of table 1 (not shown);
lists of non-graphical polynomials (table 2), and the factorisation references shown
in table 3. A standard 128 byte length record is used for each entry, on a 5.25 inch
diskette in IBM-PC format.
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